دراسة مخزونية لحقل الجيدو في منخفض الفرات

م. لمى مكاوي - مشرفة على الأعمال

جامعة البعث - كلية الهندسة الكيميائية والبترولية- قسم الهندسة البترولية

ملخص:

إن الدراسة المخزونية الصحيحة للمكمن تقودنا إلى وضع برامج حفر مناسبة للطبقات المنتجة ،كما تجعلنا نقوم بعمليات استثمار ناجحة لتحقيق أفضل عامل مردود ،وبزمن مناسب ،وبأقل التكاليف،وتساعدنا على تجنب أو حل العديد من المشاكل المرافقة لعمليات الإنتاج، وأهمها مشكلة الإماهة .

يعرض هذا البحث تحليل معطيات لدراسة جيولوجية وخزنية لحقل الجيدو، وهو أحد حقول شركة الفرات ، ويقع ضمن منطقة منخفض الفرات في محافظة دير الزور شرق سورية ،حيث يقدر الإحتياطي في هذا الحقل بحوالي 83 مليون برميل، وكان الهدف من الدراسة معرفة مواصفات وسلوكية الخزان والسوائل بداخله ، وإمكانية وجود اتصال هيدروديناميكي بين كتله ،حيث تؤخذ هذه المعلومات بعين الإعتبار عند حساب الإحتياطي وتعيين المؤشرات التكنولوجية للإستثمار الأمثل.

كلمات مفتاحية:

دراسة مخزونية ،حقل جيدو ،منخفض الفرات، ،الإحتياطي ،عامل المردود،الإماهة.

The Reservoir Study of Jido Field in Graben Euphrates

Summary:

The correct study of the reservoir leads us to develop drilling programs suitable for producing stratum.

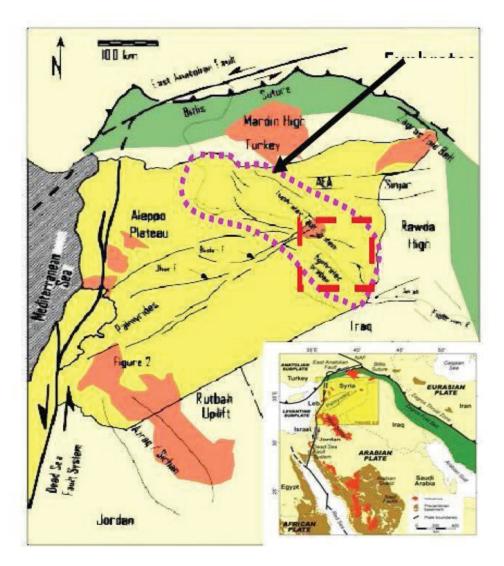
In addition, this makes us do successful operations to achieve the best recover factor ,within the convenient time and at the lowest appropriate cost. This study will help us to avoid or solve many of the problems associated with the production processes and the most important problem of rehydration .In this research I did a geological and reservoir study of the Jido Field which is one of the fields of the Euphrates Company and it is located within the area of graben Euphrates in Deir Azure to the east of Syria, where recoverable reserves which are estimated in this field is about 83 million barrels. The objective of the study was to know the specifications and behavior of the reservoir and fluid inside and the possibility of a Hydrodynamic connection between blocks ,where this information is taken into account when calculating recoverable reserves and the assign of technological indicators for investment

Key Words: Reservoir study , Jido field graben, Euphrates , Recoverable reserve, recover factor ,Hydration.

مقدمة:

إن معرفة الصفات الفيزيائية للطبقة والسوائل التي تحويها ،من العلوم الأساسية المهمة لعمليات استثمار النفط والغاز ،ولها تأثير فعال على إنتاجية الأبار وبالتالي على رفع عامل مردود المكمن .

عرض هذا البحث صفات حقل الجيدو في منخفض الفرات،حيث عرض الموقع والوضع الجيولوجي لمنخفض الفرات وموقع الحقل ،والوصف الليتولوجي لتشكيلة الرطبة المنتجة في الحقل المدروس،والتركيب الجيولوجي وخصائص المكمن ،ومن ثم دراسة ورسم منحنيات تغير كل من (اللزوجة-عامل حجم النفط-عامل انحلال الغاز) مع الضغط،ودراسة علاقة النفوذية النسبية للنفط والماء مع درجة التشبع بالماء،وحساب عامل العبور ورسم علاقته مع درجة التشبع بالماء.


كما تم قياس قيم الضغط الشعري بالعلاقة مع نسبة التشبع بالمياه ورسم المنحني الممثل لهذه العلاقة ،وتم حساب الاحتياطي الجيولوجي وعامل المردود، وتحليل سلوكية الخزان من خلال رسم المنحنيات المناسبة ، وتقييم الاتصال الهيدروديناميكي بين كتله.

الهدف من البحث:

دراسة المواصفات الخزنية لحقل جيدو ،والتي لها تأثير فعال على إنتاجية الأبار بالشكل الأمثل ،وبالتالي على رفع عامل مردود المكمن ،ومعرفة مدى التجانس في هذه المواصفات ، وقيم ضغط الإشباع والمياه المترابطة وحساب عامل العبور ودراسة علاقته مع درجة التشبع بالماء ،والإتصال الهيدروديناميكي بين الكتل ،وحساب الإحتياطي الجيولوجي في أحد الكتل وعامل المردود.

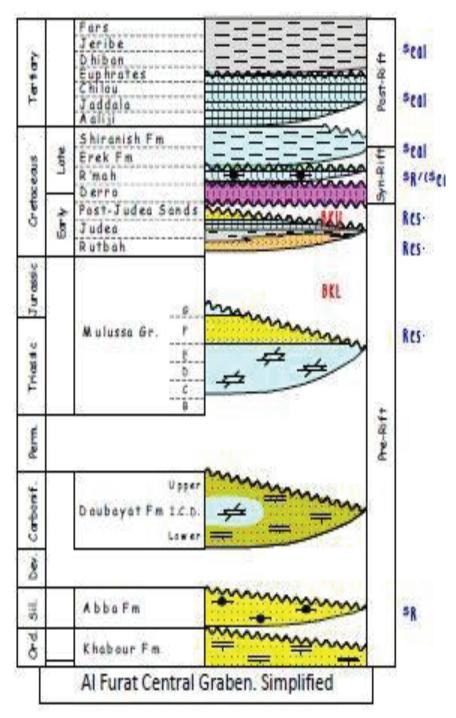
لمحة جيولوجية وستراتغرافية عن منخفض الفرات:

يقع منخفض الفرات ، في الجزء الشمالي الشرقي من الصفيحة العربية و تحديدا ضمن منظومة صدوع الفرات التي تعد إحدى النطاقات المتحركة في سورية بالإضافة إلى نظام سنجار عبد العزيز – التدمرية و نظام فوالق البحر الأحمر .

الشكل (1) موقع منطقة الدراسة

عملت هذه النطاقات على احتواء معظم التشوه التكتوني في سورية خلال فترة سابقة، بينما بقيت المناطق البينية مرتفعة من الناحية البنيوية وغير مشوهة.

يشكل نظام فوالق الفرات مع منخفض آنا في العراق نظاما فالقيا يمتد موازيا لحزام طي زاغروس ،وتعد المنظومة التكتونية في حوض منخفض الفرات، مجموعة من التصدعات المتفرعة المتوازية تظهر بنيات ذات إنزلاقات جانبية بإمتداد 350 كم ضمن الأراضي السورية مسايرة مجرى نهر الفرات ،باتجاه شمال غرب - جنوب شرق وطمرت هذه الفوالق برسوبيات من حقبى الميزوزويك و السينوزويك .


يشكل القسم الجنوبي الشرقي من منظومة التصدعات المذكورة بالتقائه مع الطي التدمري ، على امتداد 160 كم،والتي تشكلت نتيجة لاختلاف حركية الصفائح القارية التي حدثت خلال زمن إعادة التوازن للصفيحة العربية بعد زمن حدوث التصدع في الترياسي والكريتاسي العلوي والتي طمرت برسوبيات السينوزويك.

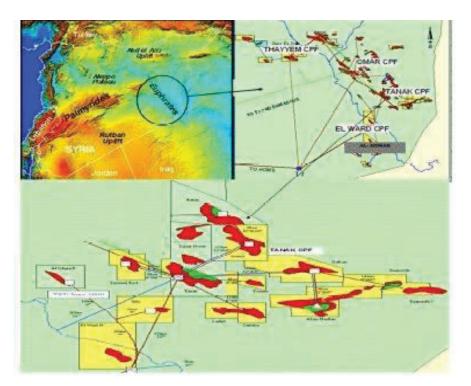
تعد منظومة فوالق الفرات مجموعة من الفوالق المتفرعة المتوازية بامتداد 350 كم ضمن الأراضي السورية مسايرة لمجرى نهر الفرات. ويضم المنخفض شبكة واسعة من المنخفضات الصغيرة التي تشكل الهيكل العام و السمة المميزة لهذا المنخفض والمطمورة بحوالي 2.5 كم من رسوبيات الحقب الثالث والتي شكلت السبب الأساسي لوجود الخزانات النفطية في المنطقة والتي تم اكتشافها خلال العقود الماضية .

أما بالنسبة للوضع الستراتغرافي في منطقة منخفض الفرات ،فهي تعتبر منطقة تكتونية معقدة ناتجة عن تاريخ بنيوي متعدد المراحل تتخللها عدة فترات من الحت وهذا ما أدى إلى اختلاف في سماكة التشكيلات التي توضعت خلال فترة ماقبل الإنهدام (Pre-Rift) ،وأثناء مرحلة الإنهدام (Syn_Rift))المسببة لتشكل منخفض الفرات. يمثل (BKL)

أسفل قاعدة الكريتاسي الذي يفصل توضعات الترياسي عن الكريتاسي، يمثل (BKU) أعلى قاعدة الكريتاسي الذي يؤثر بشكل كلي أو جزئي على طبقتي PJS ، والجوديا .

ويعتبر (BKU) و (BKU) سطحي عدم التوافق الأساسيين في منطقة منخفض الفرات.ويوجد تشوه في القسم الشمالي من الحوض نتيجة التصادم بين الصفيحة العربية والصفيحة الأوربية الآسيوية وهذا التصادم أدى إلى إعادة تنشيط بعض الفوالق و تغيرات جزئية في بعض التراكيب و تتكون التشكيلات الخازنة الأساسية للهيدروكربونات في منخفض الفرات من صخور رملية تابعة للعصر الترياسي والكريتاسي الأسفل متوضعة على هيئة الكتل مضروبة بفوالق مائلة وهذه التشكيلات الخازنة مغطاة من الأعلى ومقابل الفوالق بصخور كلسية تابعة للعصر الكريتاسي الأعلى.

الشكل (2) العمود الليتولوجي لحقول شركة الفرات في منطقة منخفض الفرات


لمحة جيولوجية عن حقل الجيدو:

1- موقع منطقة الدراسة:

يقع حقل الجيدو إلى الجنوب الشرقي من دير الزور و يبعد حوالي 17 كم إلى الشمال من حقل الورد و يتألف من كتاتين تحتويان طيات منفصلة .

الكتلة 101 تحوي نفطا في تشكيلتي الرطبة (RU) و و الملوسا (MUF1) والكتلة 104 تحتوي على النفط في طبقتي الملوسا (MUF2, MUF 3)

ويعتبر حقل الجيدو أحد حقول شركة الفرات و الذي يقع ضمن منطقة منخفض الفرات في محافظة دير الزور شرق سورية و يتبع لمحطة معالجة النتك (TANAK CPF)

الشكل (3) موقع الحقل

2- الوصف الليتولوجي لتشكيلة الرطبة (التشكيلة المنتجة):

تشكيلة الرطبة السفلية:

تقع تشكيلة الرطبة السفلية في الكريتاسي السفلي وتتألف بشكل رئيسي من الصخر الرملي وقليل من الصخر الغضاري.

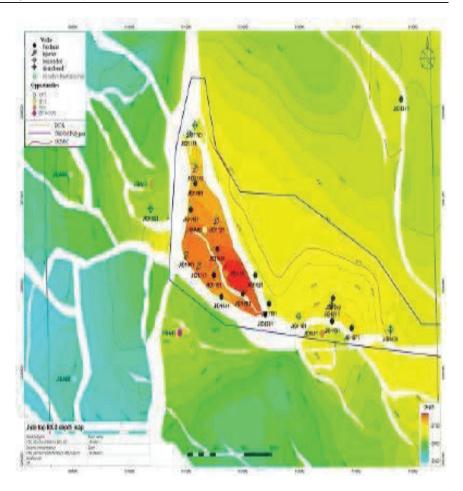
ا- الصخر الرملي: بني خفيف إلى أبيض مسمر، قليل القساوة و أحيانا هش متقصف، حبيبات الوسط صافية جدا ونادرا ما تكون خشنة، يمكن فصلها وتصنيفها (مدوره إلى شبة مدوره أو شبه زاوية) و قد يكون الملاط سيليسي و أحيانا غضاري كما تتواجد فيه شقوق مجهرية.

ب- الصخر الغضاري: رمادي إلى بني أو بني خفيف، الوسط فليل القساوة،و أحياناً طيني أو رملي و قد يحتوي على الفحم.

تشكيلة الرطبة العلوية:

تتتمي إلى الكريتاسي السفلي وتتألف من الصخر الغضاري وقليل من الصخر الرملي.

- أ- الصخر الغضاري: رمادي إلى رمادي مخضر إلى رمادي مائل إلى اللون البني ،والوسط قاسي و أحيانا يكون قليل القساوة و قد يكون رملي أ و طيني و ممكن أن يكون كلسى لكن بشكل قليل.
- ب-الصخر الرملي: بني خفيف إلى أسمر رمادي خفيف، شفاف ،والوسط قاسي و أحيانا يكون قليل القساوة، والحبيبات صافية جدا ويمكن تصنيفها زاوية إلى شبه مدورة و أحيانا مدورة و أحيانا يكون الملاط كلسي و أحيانا غضاري.


ملاحظه: الصخر الغضاري ذو اللون البني المحمر غالبا ما ينتمي إلى تشكيلة الديروأ و الملوسه ونادرا ما يتواجد في الرطبة العلوية.

تتراوح سماكة طبقة الرطبة (السفلية-العلوية) بين 40-240 م باختلاف المنطقة ،وتصل إلى السماكة الأعظمية في منطقة حقل العمر واستمرت حوالي 35 مليون سنة.

يتألف الحقل من كتلتين تحتويان طيات منفصلة:

الكتلة 101 عبارة عن طية فالقية يحده من الجنوب طية الجنوب الأساسية والطية المغلقة المنحدرة نحو الشمال.ويتوضع النفط في تشكيلات الرطبة الدنيا و الملوسة F1. تتلقى الكتلة 101 الدعم من الطبقات الصخرية المشبعة بالماء و لذلك بقي الضغط الطبقي مرتفعاً الكن و في وقت مبكر و متسارع لوحظ تسرب المياه إلى الآبار ،و قد كان تركيب المضخات الكهربائية الغاطسة أفضل استراتيجية لاستثمار هذه الكتلة.

الكتلة الأكبر هي 104 و بشكل ملحوظ و يتوضع وسط طيات منبسطة ومغلقة و يحوي على النفط فقط في الملوسة 2 MUF و MUF وتشكيلاتها. إن هذه الكتلة لا تتلقى أي دعم مائي من التشكيلات بل من آبار الحقن الثلاثة ،وتتحقق إدارة مخزون الكتلة 104 من خلال التحكم بما يخرج من الآبار و بحقن المياه لمنع انخفاض الضغط الطبقي تحت ضغط الإشباع .

الشكل (4) خريطة تركيبية للكتل 121،104،101

3-خصائص المكمن:

إن تجمعات المواد الهيدروكربونية في الكتلة 101 تتوضع في مناطق التشكل في الرطبة RU و الملوسة MUF2 بينما تتجمع توضعات الكتلة 104 في ملوسة MUF2 و MUF3. وتتألف الرطبة من عدة طبقات رملية كل واحدة بسماكة 2-10 م، و تتضافر لتشكل خزاناً معقداً بسماكة 25- 50 م. و تزداد السماكة كلما اتجهنا شرقاً و يميل الرمل ليكون طبقة صلدة إسمنتية يمكن أن تشكل حاجز أو عائق يحتمل أن تؤثر على التدفق.

تتراوح درجة التشبع بالنفط بين 0.6 و 0.5 وتبلغ المسامية حوالي 12 %، ونفوذية الصخور حوالي 300 - 1500 ميلي دارسي.

الملوسة منطقة منجرفة ، تحتوي طبقات رملية مستمرة بسماكة 1-8 م مرتبة فوق بعضها بسماكة 5-15 م، لكن الطبقات العلوية التي سماكتها 50-70 م في ملوسة MUF1 هي فقط الحاملة للنفط الصافي و الإجمالي يتراوح بين 0.2 و 0.45 و تشكل الطبقات المسامية حوالي 17 % من الصخور بنفوذية تصل حتى 1500 ميلي دارسي.

النقسيم إلى أجزاء أصغر يعتمد على محتوى البوتاسيوم في الصفيحات المتوضعة و المتداخلة حيث يظهر في سجل المعطيات أن واحدات الملوسة العلوية تحوي نسبيا نسبة عالية من البوتاسيوم . لا يتوقع استمرار الخزان الخاص بملوسة MUF2 السفلي ، الطبقات الرملية و الصفيحات المتداخلة داخل هذه الوحدة مرتبطة مع بلوك جيدو 104 و يتوقع وجود مكمن داخل الطبقات الرملية الأكثر سماكة ، بمسامية 18 بالمئة ونفوذية 1800 ميلي دارسي ، و تقل الرمال الثانوية غير العادية و هي غير هامة لصغر حجمه ، ونظرا للاقتراب من الفالق و الطية الحدودية تبدأ الصخور الرملية بالتواجد في هذه المنطقة في كل من ملوسة MUF2 و ملوسة MUF3 ، في البئر جيدو 114

4 -الخصائص الخزنية لتشكيلة الرطبة حسب معطيات ال PVT:

دراسة تغير اللزوجة وعامل انحلال الغاز وعامل حجم النفط بالعلاقة مع الضغط:

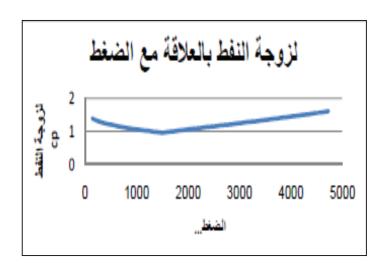
خضعت عينات نفطية من تشكيلة الرطبة للدراسة بواسطة خلية PVT ،وكانت الشروط الابتدائية كما يلي :الضغط الطبقي : 4734 psi الضغط الطبقية :736 F⁰

كثافة النفط : 0.8187 gr/cc أما الشروط الجديدة فكانت :

 $0.8604 \; \mathrm{gr/cc}$: كثافة النفط : $60 \; \mathrm{F^0}$ ، درجة الحرارة : $14.7 \; \mathrm{psi}$

وكانت نتائج الدراسة كما يلي:

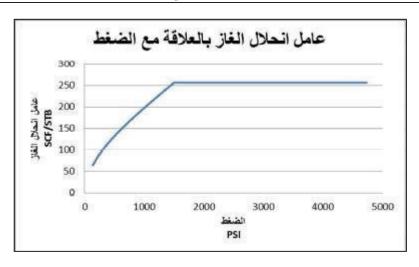
Oil Viscosity	GOR	Во	Pressure	
Ср	Scf/STB	Rb/STB	Psia	
1.615	256	1.151	4734	
1.592	256	1.152	4634	
1.569	256	1.154	4534	
1.547	256	1.155	4434	
1.524	256	1.157	4334	
1.503	256	1.158	4234	
1.481	256	1.16	4134	
1.46	256	1.161	4034	
1.439	256	1.163	3934	
1.418	256	1.164	3834	
1.397	256	1.166	3734	
1.377	256	1.167	3634	
1.357	256	1.169	3534	
1.337	256	1.17	3434	
1.298	256	1.173	3234	
1.278	256	1.175	3134	
1.259	256	1.177	3034	
1.24	256	1.178	2934	


دراسة مخزونية لحقل الجيدو في منخفض الفرات

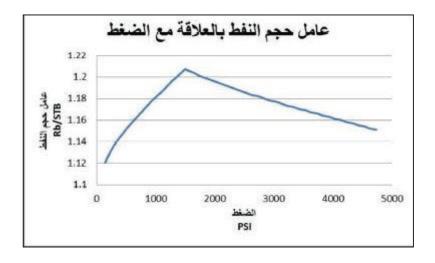
1.221	256	1.18	2834
1.202	256	1.182	2734
1.183	256	1.183	2634
1.165	256	1.185	2534
1.146	256	1.187	2434
1.127	256	1.189	2334
1.108	256	1.191	2234
1.089	256	1.193	2134
1.07	256	1.195	2034
1.051	256	1.197	1934
1.032	256	1.199	1834
1.012	256	1.201	1734
0.9913	256	1.204	1634
0.9703	256	1.206	1534
0.9631	256	1.207	1500
0.9754	248.5	1.204	1434
0.9947	236.9	1.199	1334
1.015	225.3	1.194	1234
1.036	213.6	1.188	1134
1.058	201.7	1.183	1034
1.082	189.5	1.178	934
1.107	177.1	1.172	834
1.133	164.3	1.166	734
1.163	151.1	1.16	634
1.195	137.1	1.154	534

م. لمي مكاوي	- العدد 8 - 2015	المجلد 37	مجلة جامعة البعث
--------------	-------------------	-----------------------------	------------------

1.232	.232 122.2 1.147		434
1.274	274 105.8 1.14		334
1.327	87.2	1.131	234
1.398	64.15	1.12	134


و برسم منحنيات تغير (اللزوجة، عامل انحلال الغاز المذاب، عامل حجم النفط)مع الضغط، حصلنا على الأشكال التالية:

الشكل (5)


أ-نلاحظ أنه بانخفاض الضغط تتخفض لزوجة النفط وذلك حتى ضغط الاشباع حيث تصبح العلاقة عكسية عند هذا الضغط ،فنقصان الضغط يرافقه ازدياد اللزوجة.

ب-أما عامل انحلال الغاز بالنفط GOR فنلاحظ أنه ثابت حتى ضغط الإشباع حيث يبدأ الغاز بالانفصال عند هذا الضغط وبالتالي ينخفض عامل انحلال الغاز في النفط

(6) الشكل

ج- يستخدم عامل حجم النفط Bo لإظهار التغيرات التي تطرأ على حجم السائل الطبقي بانخفاض الضغط.

الشكل(7)

من الشكل (7) نلاحظ انه قبل ضغط الاشباع يبدأعامل حجم النفط Bo بالازدياد وذلك بسبب تمدد الغاز المذاب في النفط وعند ضغط الاشباع يبدأ Bo بالانخفاض بسبب انفصال الغاز وانخفاض حجم النفط.

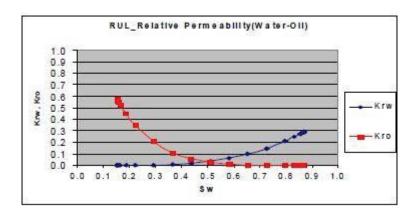
ويطلق مصطلح ضغط الاشباع على الضغط الذي يبدأ عنده الغاز بالانفصال عن السائل ويتعلق بنسبة حجم النفط وحجم الغاز المذاب فيه وبتركيبهما الكيميائي وبدرجة حرارة الطبقة.

من الدراسة والأشكال السابقة نستتج أن قيمة ضغط الإشباع كانت :1500 psia

دراسة النفوذية النسبية لكل من النفط و الماء ،وعامل العبور ،بالعلاقة مع درجة التشبع بالماء :

تمت دراسة النفوذية النسبية للنفط و الماء في العينات الاسطوانية ورسم القيم بالعلاقة مع درجة التشبع بالماء ،وتم حساب عامل العبور f_w وهو النسبة بين الماء المنتج والسائل الكلى المنتج من ماء ونفط ،عند $\mu_w = 0.5$ C.p حسب العلاقة التالية

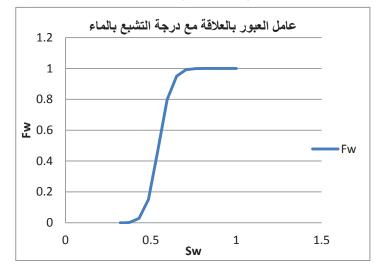
$$f_{W} = \frac{1}{1 + \frac{\mu_{W.K_{ro}}}{\mu_{o} K_{rw}}}$$


و كانت النتائج كما في الجدول التالي:

K _{ro}	K_{rw}	S _W	F_{w}
0.5700	0.0000	0.3200	#DIV/0
0.5674	0.0000	0.3206	#DIV/0
0.5648	0.0000	0.3211	#DIV/0
0.5570	0.0000	0.3227	#DIV/0

دراسة مخزونية لحقل الجيدو في منخفض الفرات

V/0 V/0
V/0
V/0
1661
7415
)447
1665
3431
0554
1503
9205

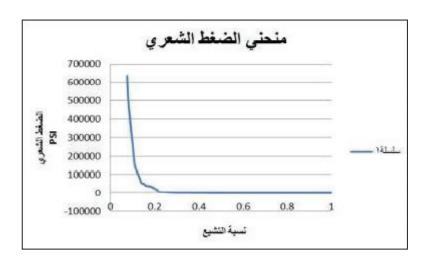

وبتمثيل النتائج السابقة حصلنا على الأشكال التالية:

الشكل (8)

نلاحظ تناقص النفوذية النسبية للنفط بازدياد درجة التشبع بالماء، حيث تتعدم $S_{\text{CW}}=0.15$ كما يتضح من المنحني أن نسبة المياه المترابطة $S_{\text{W}}=0.6$

وبرسم علاقة عامل العبور مع درجة التشبع بالماء نحصل على المنحني التالي:

(9) الشكل


تأثير القوى الشعرية على درجة التشبع بالسوائل:

استخدمت تقنية الضغط الشعري في المكامن النفطية في تحديد قيمة درجة التشبع بالمياه المترابطة ،وهي قيمة غير قابلة للإنخفاض،ولا ينتج الماء من المجال الذي يحوي مياه مترابطة ،بينما تتشكل المخاريط المائية إذا استمر الإنتاج من منطقة درجة تشبعها بالماء تفوق درجة التشبع بالمياه المترابطة. تم قياس قيم الضغط الشعري بالعلاقة مع درجةالتشبع بالمياه ،وتم حساب ارتفاع الضغط الشعري ،وكانت النتائج كما هي موضحة بالجدول التالى:

درجةالتشبع بالماء %	الضغط الشعري PSI	ارتفاع الضغط الشعري CM
0.075	635894	170
0.09	374055.3	100
0.1	261838.7	70
0.11	153362.7	41
0.13	86032.72	23
0.14	56108.3	15
0.15	52367.74	14
0.16	41146.08	11
0.18	37405.53	10
0.21	18702.77	5
0.22	7481.106	2
0.3	1870.277	0.5

0.34	1496.221	0.4
0.38	1122.166	0.3
0.55	0	0
1	0	0

ولقد تم رسم منحني الضغط الشعري بالعلاقة مع نسبة التشبع بالماء بناء على القيم الموضحة بالجدول السابق .

الشكل (10)

ونلاحظ من خلال الشكل ،أن طول الجزء الأفقي يدل على تجانس الطبقة بشكل جيد عند مستوي إلتقاء نفط-ماء وبالتالي تكون الازاحة متجانسة ولاتؤدي إلى تشكل ألسنة مائية وهذا ماتؤكده نسبة المياه المنتجة المنخفضة.

5-حساب الإحتياطي الجيولوجي و عامل المردود في الكتلة 121:

تم حساب الإحتياطي الجيولوجي وعامل المردود من خلال علاقة stoip:

$$N = V \times \emptyset \times (1 - S_{WC})/B_{Oi}$$

حيث N الاحتياطي الجيولوجي في الشروط السطحية ،

27.898mmbbl = حجم المكمن V

 $0.15\% = \Delta$ المسامية

1.208rb/STB= عامل حجم النفط الابتدائي BOI

0.15 =نسبة المياه المترابطة Swc

بالتعويض بمعادلة stoip نجد N=4mmbbl

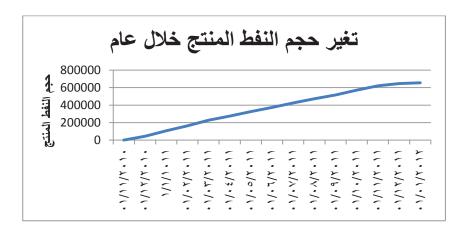
كمية النفط التراكمي المنتج هي: Np =655016 BBL حتى Np =655016

عامل المردود : %NP/N =16.37

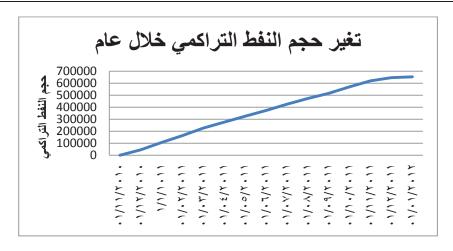
نلاحظ أن المردود عالى خلال زمن قصير.

6-حساب عامل المردود للكتلة 121 خلال عام واحد:

تم قياس الإنتاجية التراكمية للنفط والإنتاج الصافي من النفط وتحديد الضغط الطبقي أثناء الإنتاج خلال عام ومن ثم تم حساب المردود.

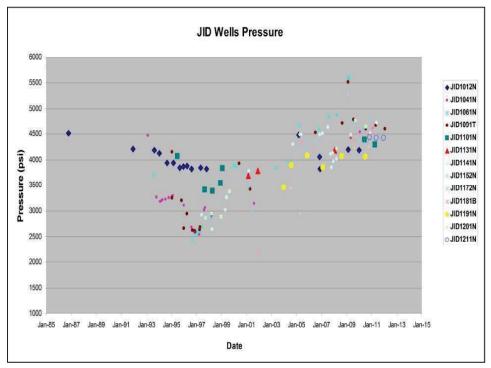

نلاحظ زيادة عامل المردود بشكل واضح خلال فترة قصيرة مع تغير قليل جداً في الضغط الطبقي، و تفسير ذلك هو أن المكمن يعتمد على الدفع المائي (القاسي).

التاريخ	الضغط	حجم النفط المنتج	حجم النفط التراكمي	عامل المردود
	psia	bbl	bbl	
1/11/2010		0		0
1/12/2010	4734	44946	44929	0.011237
1/1/1011		106181	106164	0.026545
1/2/2011		163930	163913	0.040983
1/3/2011		226598	226581	0.05665
1/4/2011		275367	275216	0.068842
1/5/2011		325217	325066	0.081304
1/6/2011	4710	373896	373740	0.093474
1/7/2011		424996	424820	0.106249
1/8/2011		472814	472638	0.118204
1/9/2011		516275	516032	0.129069
1/10/2011		571393	570771	0.142848
1/11/2011		620592	619724	0.155148
1/12/2011		647103	646103	0.161776
1/1/2012	4710	655016	653980	0.163754


وبرسم العلاقة لكل من المردود وحجم النفط التراكمي وحجم النفط المنتج والضغط بالعلاقة مع التاريخ ،نحصل على الأشكال التالية:

الشكل(11)

الشكل (12)


الشكل (13)

الشكل (14)

7-تقييم الإتصال الهيدروديناميكي:

الشكل (15)

نلاحظ بشكل عام أن الآبار المحفورة في كتل حقل جيدو قبل ال 1993 كانت قيم الضغط الطبقي فيها عالية ، ثم شهدت هبوطاً ملحوظاً إلى قيم متدنية في عام 1997 ، حيث تم حفر آبار لحقن المياه لدعم الضغط الطبقي ، لذلك نلاحظ صعوداً تدريجياً في قيمة الضغط الطبقي بعد عام 1998 نتيجة حقن المياه ، أما الآبار المحفورة في الكتلة قيمة الضغط الطبقي بعد عام 101 نتيجة عن المال فنلاحظ أن الضغط الطبقي فيها مرتفع نسبياً لأن هذه الكتلة تتلقى الدعم المائي الذي يعوض انخفاض الضغط الطبقي

نتيحة الاستثمار ، من الطبقات الصخرية المشبعة بالماء ، لكن الكتلة 104 لا تتلقى دعم مائي من التشكيلات ، و إنما من آبار الحقن حيث يتم حقن المياه في هذه الكتلة لمنع انخفاض الضغط الطبقى تحت ضغط الإشباع .

حتى قيم الضغط الطبقي في الآبار المحفورة بعد 2001 تأخذ قيماً تصاعدية للضغط الطبقي بعد الدعم من آبار الحقن مما يدل على وجود اتصال هيدروديناميكي بين الكتل و الآبار المحفورة فيما بينها .

النتائج:

بعد رسم منحني تغير لزوجة النفط مع الضغط ،نلاحظ أنه بانخفاض الضغط تتخفض اللزوجة وذلك حتى ضغط الإشباع ،و تصبح بعده العلاقة عكسية ،حيث نقصان الضغط يرافقه ازدياد اللزوجة.

- بعد رسم منحني تغير عامل انحلال الغاز بالعلاقة مع الضغط نجد أن عامل انحلال الغاز ثايت مع نقصان الضغط حتى الوصول إلى ضغط الإشباع ،حيث يبدأ الغاز بالإنفصال عنده ،وبالتالي ينخفض عامل انحلال الغاز في النفط.
- ب- من منحني علاقة عامل حجم النفط B بالضغط نلاحظ أنه قبل ضغط الإشباع يبدأ عامل حجم النفط بالازدياد مع انخفاض الضغط وذلك بسبب تمدد الغاز المنحل في النفط،وعند ضغطالإشباع يبدأ B بالإنخفاض بسبب انفصال الغاز وانخفاض حجم النفط.
- ت- من المنحنيات السابقة نستنتج أن قيمة ضغط الإشباع هي (1500 PSi) وينتج المكمن بفعل الدفع المائي ،وضغط المكمن أعلى من ضغط الإشباع،ويجب المحافظة على هذا الضغط من أجل الإستثمار الامثل للطبقة.

- $^{-}$ بدراسة النفوذية النسبية للنفط والماء بالعلاقة مع درجة التشبع بالماء تناقصت النفوذية النسبية للنفط بازدياد درجة التشبع بالماء حتى انعدمت عند قيمة $S_{cw}=0.15$ ، وكانت نسبة المياه المترابطة $S_{cw}=0.15$
- ج- يفضل استثمار الطبقة قبل وصول قيمة عامل العبورإلي 0.8 وعند درجة تشبع قليلة، بحيث لا نصل لمرحلة الإماهة.
- ح- بعد رسم علاقة الضغط الشعري مع نسبة التشبع بالماء ، لاحظنا أن طول الجزء الأفقي من المنحني يدل على تجانس الطبقة بشكل جيد عند مستوى التقاء النفط بالماء، وبالتالي تكون الإزاحة متجانسة ولا تؤدي إلى تشكل ألسنة مائية وهذا ما تؤكده نسبة المياه المنتجة المنخفضة.
- خ- قيمة الإحتياطي الجيولوجي المحسوب N=4 MM BBL ، وقيمة عامل المردود % 16.37 حيث كان المردود عالي خلال زمن قصيرمع تغير قليل جداً في الضغط الطبقي ، ويفسر ذلك باعتماد المكمن على الدفع المائي القاسي ، وهذا يمكن أن يدل على أن الإحتياطي الجيولوجي القابل للاستثمار أكبر مما هو متوقع.
- د- احتمال وجود اتصال هيدروديناميكي بين البلوك 101و 121 المرتفع تركيبيا"،حيث تتلقى الكتلة 101 الدعم المائي الذي يعوض انخفاض الضغط الطبقي ،ويعطي الإنتاجية العالية ،باالإضافة إلى المواصفات الخزنية الجيدة للرطبة.ويؤمن الاتصال الهيدروديناميكي،فعالية دعم الضغط الطبقي.

أما الكتلة 104 لاتتلقى دعم مائي من التشكيلات ،وإنما من أبار الحقن التي يتم حقن المياه من خلالها للمحافظة على الضغط الطبقى.

المراجع العربية:

- 1. الخضور، غادة ، 2008 هندسة مخزون النفط والغاز (3). جامعة البعث، كلية الهندسة الكيميائية والبترولية، 279.
- 2. الخضور ،غادة ، 2011 هيدروليك الموائع الجوفية (2). جامعة البعث ، كلية الهندسة الكيميائية والبترولية ، 268 .
- 3 . عبد الأحد ، جورج، 1982 فيزياء الطبقة النفطية والغازية (1) . جامعة البعث ، كلية الهندسة الكيميائية والبترولية، 194.
- 4. نوفل ،عماد. عبد الأحد ،جورج ،1995 هيدروليك الموائع الجوفية (1). جامعة البعث ، كلية الهندسة الكيميائية والبترولية ،190 .
 - 5. شركة الفرات، 2012 معلومات حقلية .

المراجع الأجنبية:

- 1.AHMED T.MCKINNEY P,2005-Advanced Reservoir engineering. Gulf Professional Publishing ,USA,422.
- 2.SLIDER H.C,1976 <u>Practical Petroleum Reservoir</u> Engineering Method . Publishing Co,Tulsa, OK,70.