الدكتورة: .غزل طهماز 1

ملخص:

يستخدم نظام المنطق الضبابي عادة للتنبؤ بقيم معينة لبعض المتغيرات حيث يتم تحويل البيانات الحقيقية إلى بيانات ضبابية باستخدام دالة انتماء مناسبة. في نظام المنطق الضبابي يوجد أنواع مختلفة لدالة الانتماء المستخدمة لتضبيب البيانات.

في هذا البحث تم إنتاج ألياف نانوية باستخدام عملية الغزل الكهربائي وتم تحديد مستوى توجيه الألياف المنتجة عن طريق مسحها بالمجهر الالكتروني واستخدام برنامج imagej، وتم التبؤ بتوجيه الألياف النانوية (متمثلا بزوايا الانحراف) كخرج للعملية مع تطبيق كافة أنواع دالات الانتماء الموجودة في نظام المنطق الضبابي باستخدام الماتلاب بالاعتماد على متغيرات ثابتة لعملية الغزل الكهربائي وتغيير في السرعة الدورانية للمجمع. كما تم مقارنة قيم زوايا الانحراف المتنبأ بها بالاعتماد على الدالات المختلفة مع القيم الحقيقية التي حصلنا عليها تجريبياً ضمن شروط محددة. وتم اختيار دالة الانتماء الأفضل اعتماداً على متوسط الخطأ الأصغري للقيم المتنبأ بها.

وكانت دالة الانتماء الأفضل بناء عل أصغر متوسط خطأ في سلسلة البيانات المدروسة هي دالة غوص Gauss 2).

كلمات مفتاحية: الغزل الكهربائي، الألياف النانوية ، المنطق الضبابي، دالة الانتماء، الذكاء الصنعي ، توجيه الألياف.

 $^{^{1}}$ مدرس عضو هيئة تدريسية في جامعة البعث، كلية الهندسة الكيميائية والبترولية ، قسم هندسة الغزل والنسيج

Choose the Suitable Fuzzy Membership Function in Prediction of orientation of Nanofibers Produced from Electrospinning Using Fuzzy Logic

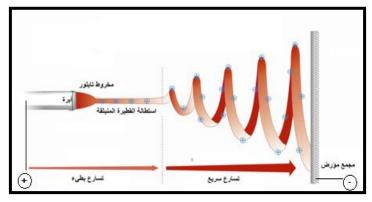
Abstract:

Fuzzy logic System is used to predict some parameters. In this system the crisp data were converted into fuzzy data using membership function. There are many members ship functions used in fuzzy system to fuzzify data. In this search, oriented nanofibers were obtained by electrospinning process and scanned by SEM.

The orientation of nanofibers i.e. was predicted as output of the system using all membership functions in fuzzy system by Matlab. The parameters of electrospinning process were constant except the rotational speed. A comparison has been made among the predicted data using different membership functions. One membership function had been selected based on minimum error in prediction of data. It had been cleared that the best membership function was Gauss2 function.

Key words:

Electrospinning, Nanofibers, Fuzzy logic Membership function, Artificial intelligence, fibers orientation


1. مقدمة: Introduction

1.1. الغزل الكهربائي والألياف النانوية:

تعتبر عملية الغزل الكهربائي عملية بسيطة وأساسية لإنتاج ألياف بأقطار دقيقة جداً ضمن مجال النانومتر تسمى بألياف النانو أو (الألياف النانوية) حيث تتجمع متداخلة بشكل عشوائي لتشكل أقمشة غير منسوجة بخصائص رائعة كالكثافة السطحية العالية و المسامية المرتفعة إضافة إلى الخصائص الميكانيكية الممتازة [2].

تستخدم الأقمشة غير المنسوجة المكونة من ألياف النانو في كثير من التطبيقات الهندسية، كهندسة النسج التي تستخدم الشبكات غير المنسوجة المكونة من ألياف النانو المغزولة كهربائياً لإصلاح النسج البشرية، وكذلك استخدامها في حقل الفلترة وفي مجال الطاقة و الكهرباء إضافة إلى أنه يمكن الحصول على حساسات ذات حساسية عالية وسرعة استجابة كبيرة باستخدام ألياف النانو التي تملك كثافة سطحية عالية [6].

في عملية الغزل الكهربائي يوجد قطبين ، قطب مشحون بشحنة موجبة أو سالبة مع أنبوب شعري معدني (إبرة معدنية) والقطب الآخر المشحون بشحنة معاكسة يتصل مع المجمع حيث تسحب القطرة البوليميرية (بوليمير + مذيب) الخارجة من الأنبوب الشعري متحولة إلى ليف نانوي وتترسب على المجمع كما هو موضح بالشكل (1).

الشكل (1) مبدأ عملية الغزل الكهربائي[4]

* متغيرات عملية الغزل الكهربائي: Electrospinning Process Parameters

تقسم متغيرات عملية الغزل الكهربائي بشكل عام إلى 3 أقسام:

- 1) متغيرات متعلقة بالمحلول البوليميري وتتضمن: لزوجة المحلول البوليميري و الوزن الجزيئي للبوليمير، قوة التوتر السطحي للمحلول البوليميري، العزل الكهربائي للمذيب، الموصلية الكهربائية للمحلول البوليميري
- 2) متغيرات متعلقة بالعملية وتتضمن: الجهد الكهربائي المرتفع، معدل التغذية بالمحلول البوليميري، المسافة بين المجمع وفوهة البثق، قطر فوهة البثق، وضع الأقطاب الكهربائية، درجة الحرارة
- (3) متغيرات متعلقة بالجو المحيط وتتضمن: الرطوبة، الضغط، نوعية الهواء المحيط[4].

يمكن دراسة تأثير كل متغير من المتغيرات المذكورة سابقاً على قطر ألياف النانو على حدى، وفي هذا البحث قمنا بدراسة تأثير أحد هذه المتغيرات وهو لزوجة المحلول البوليميري على قطر ألياف النانو الناتجة عن عملية الغزل الكهربائي [6].

2.1. المنطق الضبابي:

وهو أحد أشكال المنطق الرقمي (digital logic) ويعرف أيضا باسم منطق الغموض. نشأ هذا المنطق عام 1965 على يد العالم الأذربيجاني الأصل "لطفي زادة" من جامعة كاليفورنيا حيث طوّره ليستخدمه كطريقة أفضل لمعالجة البيانات، لكن نظريته لم تلق اهتماماً حتى عام 1974 حيث استخدم منطق الغموض في تنظيم محرك بخاري، ثم تطورت تطبيقاته حتى وصلت لتصنيع شريحة منطق ضبابي والتي استعملت في العديد من المنتجات كآلات التصوير.

منطق الضباب بالمعنى الواسع هو منظومة منطقية تقوم على تعميم أوسع للمنطق التقليدي الكلاسيكي الرقمي ثنائي القيم الذي يعتمد على 0 أو 1 فقط ، وذلك للاستدلال في ظروف غير مؤكدة وذلك عن طريق استخدام مدخلات بين (0و 1). حيث أن الصح

والخطأ لا تكفي من أجل تمثيل كافة الأشكال المنطقية وخاصة المشاكل التي تواجهنا حاليا. فالمنطق الكلاسيكي يعتمد على 0 أو 1 فقط وهذا ما يعتمد عليه الكثير من العلاقات في حين توجد علاقات أخرى يكون فيها الموضع الذي فيها يمكن اعتباره صحيح جزئياً أو خاطئ جزئياً في نفس الوقت.

هناك العديد من الدوافع التي دفعت العلماء إلى تطوير علم المنطق الضبابي فمع تطور الحاسوب والبرمجيات نشأت الرغبة في اختراع أو برمجة أنظمة يمكنها التعامل مع المعلومات الغير الدقيقة على غرار الإنسان لكن هذا ولد مشكلة حيث أن الحاسوب لا يمكنه التعامل إلا مع معطيات دقيقة ومحددة. وقد نتج عن هذا التوجه ما يعرف بالأنظمة الخبيرة أو الذكاء الاصطناعي ويعتبر علم المنطق الضبابي أحد النظريات التي يمكن من خلالها بناء مثل هذه الأنظمة. حيث يمثل هذا المنطق طريقة سهلة لتوصيف وتمثيل الخبرة البشرية، كما أنه يقدم الحلول العملية للمشاكل الواقعية، وهي حلول بتكلفة فعالة ومعقولة، بالمقارنة مع الحلول الأخرى التي تقدمها التقنيات الأخرى [6].

2. هدف البحث: The Aim of Research

يهدف البحث إلى إنتاج شبكات غير منسوجة مكونة من ألياف نانوية موجهة بعملية الغزل الكهربائي وفق متغيرات محددة وتصميم نظام برمجي للتنبؤ بتوجيه الألياف النانوية الناتجة (عن طريق زاوية الانحراف)، وذلك باستخدام المنطق الضبابي. وتحديد دالة الانتماء الأفضل للتنبؤ بتوجيه الألياف (زاوية انحراف الألياف) لتصميم نظام منطق ضبابي بأفضل نتيجة.

3. المواد والمعدات المستخدمة في البحث: Materials And Equipments 1.3. المواد : Materials

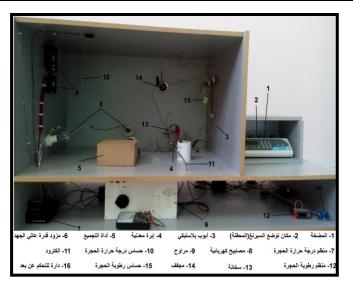
1 - بوليمير بولى ڤينيل الكحول (PVA):

وهو بوليمير صديق للبيئة يستخدم في الصناعات الغذائية وتصنيع المضغوطات الدوائية وبالتالي فإن ألياف النانو البوليميرية المصنعة منه لن تكون ذات تأثير سمي على جسم الإنسان وهو ينحل في الماء وبالتالي فإنه لن يسبب ضرراً على البيئة أو الصحة بحالة تبخر المذيب سواء أثناء تحضير المحلول أو أثناء تصنيع ألياف النانو، إضافة إلى سهولة الحصول عليه. يتوفر الـ PVAبشكل حبيبات دقيقة، ويحدد على العبوة درجة بلمرته(1700-1800).

الشركة المنتجة: LOBACHEMIE - بلد الصنع: MUMBAI-INDIA

2- الماء المقطر:

يستخدم كمذيب لبوليمير بولي ڤينيل الكحول عند الدرجة 85 درجة مئوية.

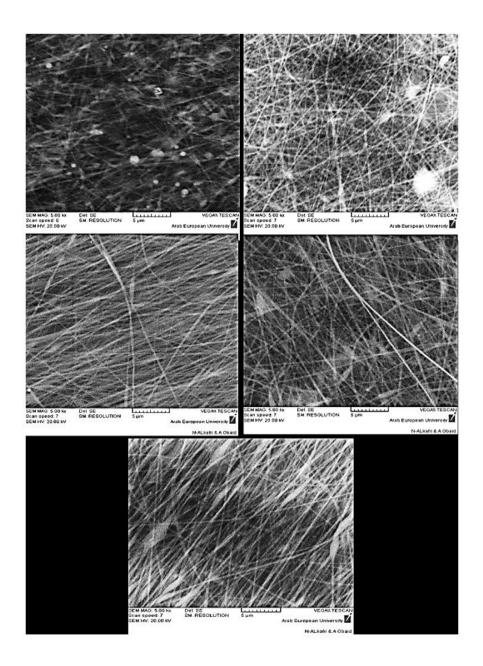

2.3. المعدات:

- 1- سخان مزود بتحريك مغناطيسي وبعض الزجاجيات: لتحضير المحلول البوليميري.
- 2- جهاز الغزل الكهربائي والذي يتألف بشكل رئيسي من ثلاثة أقسام (معدات البثق والمجمع بالإضافة إلى مزود قدرة عالي الجهد): للحصول على الألياف النانوية الشكل (2).
 - 3- مجهر الكتروني: لمسح العينات الناتجة عن جهاز الغزل الكهربائي بهدف تحليلها.
- 4- برامج (image j- Matlab): برنامج image j: برنامج (image j- Matlab): برنامج عليها من المجهر الالكتروني ومعرفة متوسط أقطار الألياف في كل عينة، أما برنامج Matlab لتطبيق نظام المنطق الضبابي وصولاً إلى القواعد الضبابية ثم النتبؤ بقطر الألياف.

Procedures : 4.1 الإجراءات

1- تحضير المحلول البوليميري بتركيز 7 % تركيز وزني حتى نحصل على محلول لزج شفاف، يخضع بعدها المحلول لعملية الغزل الكهربائي.

- 2- تنفيذ عملية الغزل الكهربائي على المحلول الناتج عن (1) بتثبيت المتغيرات الخاصة بالمحلول والعملية وتغيير السرعة الدورانية للمجمع.
 - 3- مسح العينات الناتجة باستخدام المجهر الالكتروني.
- 4- تحليل صور العينات باستخدام برنامج imagej لتحديد مستوى التوجيه الحقيقي للألياف النانوية.
- 5- استخدام برنامج الماتلاب لتطبيق نظام المنطق الضبابي في التنبؤ حيث تم الاعتماد على السرعات الدورانية كمدخل مع الأخذ بعين الاعتبارات باقى المتغيرات .
 - 6- تحديد الخرج وهو مستوى توجيه الألياف النانوية في كل عينة.
 - 7- اختيار مجال التضبيب.
 - 8- اختيار معامل التضبيب (دالة الانتماء).
 - 9- وضع القواعد الضبابية.
 - -10 إجراء عملية التضبيب.
 - 11- التنبؤ بتوجيه الألياف النانوية (متوسط زاوية انحراف الألياف) لكل عينة.
- 12- حساب متوسط الخطأ النسبي بالاعتماد على قيم مستوى التوجيه الحقيقي للألياف ومستوى التوجيه المتنبأ به اعتماداً على معامل الانتماء.
 - 13- تكرار الخطوات (8، 9، 10، 11، 12) لكل دالة انتماء على حدة.
- 14- اختيار دالة الانتماء الأنسب بناء على أصغر قيمة لمتوسط الخطأ النسبي لمستوى التوجيه المتنبأ به.



الشكل (2) جهاز الغزل الكهربائي الموجود في قسم هندسة الغزل والنسيج بكلية الهندسة الشكل (2) الكيميائية البترولية بجامعة البعث

5. التطبيق باسخدام الماتلاب:

- مجال الخرج المتمثل بتوجيه الألياف النانوية (زاوية الانحراف) لكل عينة: [90-5] درجة.
 - مجال الدخل المتمثل بالسرعة الدورانية للمجمع: [6000-0] دورة/د.

6. النتائج: Results

الشكل (3) صور مجهرية لبعض العينات الممسوحة باستخدام المجهر الالكتروني

Tri MF الخطأ النسبي للقيم المنتبأ بها باستخدام دالة الانتماء

Input (rpm)	Real output (Degree)	Predicted output (Degree)	E(%)	No.
3000	90	82	8.9	1
3250	85	77.4	8.9	2
3500	80	67.3	15.9	3
3750	75	66.8	10.9	4
4000	60	62	3.3	5
4250	50	50.1	0.2	6
4500	45	40	11.1	7
4750	35	33.4	4.6	8
5000	25	22.5	10.0	9
5250	20	17.5	12.5	10
5500	15	12.5	16.7	11
5750	10	7.38	26.2	12
6000	5	3.7	26.0	13

متوسط الخطأ النسبي: 11.9 %

الجدول (2-6) الخطأ النسبي للقيم المنتبأ بها باستخدام دالة الانتماء Trap MF

Input (rpm)	Real output (Degree)	Predicted output (Degree)	E(%)	No.
3000	90	82.5	8.3	1
3250	85	82.7	2.7	2
3500	80	77.5	3.1	3
3750	75	68.1	9.2	4
4000	60	58.2	3.0	5
4250	50	50	0.0	6
4500	45	40	11.1	7
4750	35	30	14.3	8
5000	25	22.8	8.8	9
5250	20	17.5	12.5	10
5500	15	12.7	15.3	11
5750	10	7.2	28.0	12
6000	5	2.49	50.2	13

متوسط الخطأ النسبي: 12.8 %

gbell MF الخطأ النسبي للقيم المتتبأ بها باستخدام دالة الانتماء

Input (rpm)	Real output (Degree)	Predicted output (Degree)	E(%)	No.
3000	90	82.4	8.4	1
3250	85	79.9	6.0	2
3500	80	70.2	12.3	3
3750	75	67.9	9.5	4
4000	60	57.5	4.2	5
4250	50	49.7	0.6	6
4500	45	35	22.2	7
4750	35	27.8	20.6	8
5000	25	20	20.0	9
5250	20	17.5	12.5	10
5500	15	12.5	16.7	11
5750	10	7.48	25.2	12
6000	5	2.9	42.0	13

متوسط الخطأ النسبي: 15.4%

الجدول (6-4) الخطأ النسبي للقيم المتتبأ بها باستخدام دالة الانتماء gauss MF

Input (rpm)	Real output (Degree)	Predicted output (Degree)	E(%)	No.
3000	90	82.5	8.3	1
3250	85	80	5.9	2
3500	80	73.1	8.6	3
3750	75	69.6	7.2	4
4000	60	57.9	3.5	5
4250	50	49.9	0.2	6
4500	45	45	0.0	7
4750	35	30	14.3	8
5000	25	22.5	10.0	9
5250	20	17.5	12.5	10
5500	15	12.9	14.0	11
5750	10	11.6	16.0	12
6000	5	5.9	18.0	13

متوسط الخطأ النسبي: 9.1 %

الجدول (6-5) الخطأ النسبي للقيم المتنبأ بها باستخدام دالة الانتماء gauss2 MF

Input (rpm)	Real output (Degree)	Predicted output (Degree)	E(%)	No.
3000	90	82.6	8.2	1
3250	85	82.4	3.1	2
3500	80	77.5	3.1	3
3750	75	69.5	7.3	4
4000	60	57.7	3.8	5
4250	50	50	0.0	6
4500	45	47	4.4	7
4750	35	30	14.3	8
5000	25	22	12.0	9
5250	20	22.7	13.5	10
5500	15	14.6	2.7	11
5750	10	9.9	1.0	12
6000	5	4.2	16.0	13

متوسط الخطأ النسبي: 6.9 %

الجدول (6-6) الخطأ النسبي للقيم المتنبأ بها باستخدام دالة الانتماء Sig MF

Input (rpm)	Real output (Degree)	Predicted output (Degree)	E(%)	No.
3000	90	85.7	4.8	1
3250	85	85.2	0.2	2
3500	80	81.1	1.4	3
3750	75	77.6	3.5	4
4000	60	64.1	6.8	5
4250	50	58.9	17.8	6
4500	45	61	35.6	7
4750	35	55.9	59.7	8
5000	25	53	112.0	9
5250	20	51	155.0	10
5500	15	50.8	238.7	11
5750	10	48	380.0	12
6000	5	45.6	812.0	13

متوسط الخطأ النسبي: 140.6 %

Usig MF الخطأ النسبي للقيم المنتبأ بها باستخدام دالة الانتماء

Input (rpm)	Real output (Degree)	Predicted output (Degree)	E(%)	No.
3000	90	83.4	7.3	1
3250	85	83	2.4	2
3500	80	78	2.5	3
3750	75	72	4.0	4
4000	60	58.2	3.0	5
4250	50	50.4	0.8	6
4500	45	46.6	3.6	7
4750	35	31.6	9.7	8
5000	25	23.1	7.6	9
5250	20	18	10.0	10
5500	15	12.7	15.3	11
5750	10	7.8	22.0	12
6000	5	3.03	39.4	13

متوسط الخطأ النسبي: 9.8 %

الجدول (8-6) الخطأ النسبي للقيم المتتبأ بها باستخدام دالة الانتماء Psig MF

Input (rpm)	Real output (Degree)	Predicted output (Degree)	E(%)	No.
3000	90	83.6	7.1	1
3250	85	82.7	2.7	2
3500	80	76.4	4.5	3
3750	75	71.9	4.1	4
4000	60	56.8	5.3	5
4250	50	50.3	0.6	6
4500	45	40.4	10.2	7
4750	35	31	11.4	8
5000	25	22.7	9.2	9
5250	20	17.7	11.5	10
5500	15	12.7	15.3	11
5750	10	7.7	23.0	12
6000	5	3.13	37.4	13

متوسط الخطأ النسبي: 11 %

الجدول (6-6) الخطأ النسبي للقيم المتنبأ بها باستخدام دالة الانتماء Pi MF

Input (rpm)	Real output (Degree)	Predicted output (Degree)	E(%)	No.
3000	90	83.3	7.4	1
3250	85	82.9	2.5	2
3500	80	78.2	2.3	3
3750	75	71.7	4.4	4
4000	60	58	3.3	5
4250	50	51	2.0	6
4500	45	41.1	8.7	7
4750	35	31.1	11.1	8
5000	25	23.1	7.6	9
5250	20	18	10.0	10
5500	15	13	13.3	11
5750	10	8.1	19.0	12
6000	5	2.91	41.8	13

متوسط الخطأ النسبي: 10.3 %

الجدول (6-10) الخطأ النسبي للقيم المتنبأ بها باستخدام دالة الانتماء SMF

			1	
Input (rpm)	Real output (Degree)	Predicted output (Degree)	E(%)	No.
3000	90	85.5	5.0	1
3250	85	85.9	1.1	2
3500	80	83.3	4.1	3
3750	75	77.8	3.7	4
4000	60	73	21.7	5
4250	50	69	38.0	6
4500	45	64	42.2	7
4750	35	59	68.6	8
5000	25	55.8	123.2	9
5250	20	53.4	167.0	10
5500	15	50.8	238.7	11
5750	10	48	380.0	12
6000	5	46	820.0	13

متوسط الخطأ النسبي: 147.2 %

Z MF الخطأ النسبي للقيم المتنبأ بها باستخدام دالة الانتماء

Input (rpm)	Real output (Degree)	Predicted output (Degree)	E(%)	No.
3000	90	42	53.3	1
3250	85	40	52.9	2
3500	80	35.4	55.8	3
3750	75	28.8	61.6	4
4000	60	25.4	57.7	5
4250	50	20.4	59.2	6
4500	45	15.4	65.8	7
4750	35	11.3	67.7	8
5000	25	8.83	64.7	9
5250	20	6.33	68.4	10
5500	15	3.83	74.5	11
5750	10	1.36	86.4	12
6000	5	1.8	64.0	13

متوسط الخطأ النسبي: 64 %

الجدول (6-12) الخطأ النسبي للقيم المتنبأ بها لكافة الدالات

(%) متوسط الخطأ	الانتماء دالة
11.9	trimf
12.8	trapmf
15.4	gbellmf
9.1	gaussmf
6.9	gauss2mf
140.6	sigmf
9.8	dsigmf
11	psigmf
10.3	pigmf
147.2	smf
64	zmf

7. الخلاصة: Conclusion

تم إنتاج ألياف نانوية موجهة باستخدام عملية الغزل الكهربائي، وتطبيق المنطق الضبابي للتنبوء بتوجيه الألياف (زوايا الانحراف) باستخدام برنامج ماتلاب. وتم حساب متوسط الخطأ النسبي لزوايا الانحراف المتنبأ بها عند كل دالة من دالات الانتماء الموجودة في نظام المنطق الضبابي.

كما تم تلخيص متوسط قيم الأخطاء لكل معامل من المعاملات في الجدول (6-12) ويلاحظ أن متوسط الخطأ الأقل كان عند دالة الانتماء Gauss2 وبالتالي تعتبر هي أفضل دالة انتماء للتنبوء بقيم زوايا انحراف الألياف لكل عينة وفق مجال المتغيرات المدروس.

6. المراجع (References):

* المراجع الأجنبية:

- [1] Chitral J. and Shesha H. (2011), A Theoretical Understanding of the Physical Mechanisms of Electrospinning. Proc. ESA Annual Meeting on Electrostatics.
- [2] HuangZh. M., Zhang Y.Z.,Kotaki M., Ramakrishna S.(2003), <u>A review on polymer nanofibers by electrospinning and their applications in nanocomposites</u>. CompositeScience and Technology.
- [3] Ramakrishna S., Fujihara K., Ma Z. (2005), An Introduction to Electrospinning and Nano-fibers. World Scientific Publishing Co. Pte. Ltd., National University of Singapore, 396p.
- [4] T. Duńvki, V. Saryviak. (2019), <u>Analysis and characterization of SiO2 nanowires via electrospinning technique</u>. Exp. Theo. NANOTECHNOLOGY, VOL. 3, 263-274p.
- [5] Franck D. (2013), <u>Introduction to fuzzy logic</u>. Research gate.