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Comparative Performance Analysis of Convolutional Neural
Networks and Hybrid Models in Answer Bubble Classification
Eng. Mohammed Ahmad Ali
Supervision: Dr. Alida Isber Dr. Suhel Hammoud

ABSTRACT

This study aims to compare the performance of a model based on
Convolutional Neural Networks (CNN) with a hybrid model that integrates
CNN architecture with Transformer layers in the task of answer bubble
classification (filled, empty, or crossed-out). We developed a CNN
composed of five convolutional layers as the baseline model, and a hybrid
model consisting of convolutional layers followed by two Transformer
units. The models were trained on real-world answer bubble images
categorized into three classes—filled, empty, and crossed-out—using
unified training settings.

The impact of data augmentation on generalization accuracy was also
examined. Results showed that the hybrid model without data
augmentation achieved the highest performance, with a classification
accuracy of approximately 99.96%. The findings further indicated that
most classification errors occurred in distinguishing between filled and
crossed-out bubbles. The study demonstrates that combining local features
extracted by CNNs with the global contextual awareness provided by
Transformers enhances classification performance in fine-grained visual
tasks such as answer bubble recognition. Additionally, it was found that
unstructured use of data augmentation can, in some cases, lead to adverse
effects. These results highlight an effective methodology that can be
employed in automated exam grading systems to improve both accuracy
and flexibility.
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