محدوديّة مؤثر كوشي – بومبيو التكاملي في ثُمن قرص الواحدة

* أ.د. حسن بدّور + د. عبد الباسط يونسو ** أنس قر

□الملخص □

في هذا البحث قمنا بتعيين صيغة كوشي – بومبيو التكامليّة في ثُمن قرص الواحدة من المستوي العقدي، باستخدام تحويل محافظ ينقل ثُمن قرص الواحدة \mathbb{D}_4 إلى نصفها \mathbb{D}_4 إنْ أنّ تمثيل كوشي – بومبيو التكاملي موجود مسبقاً في نصف قرص الواحدة، وذلك بُغية إيجاد مؤثر كوشي – بومبيو التكاملي في ثُمن قرص الواحدة، ثم أثبتنا محدوديّة مؤثر كوشي – بومبيو الناتج، باستخدام متراجحة شميتز باعتباره مؤثراً في الفضاء $\mathcal{C}^{\alpha}(\mathbb{D}_4;\mathbb{C})$ حيث α عدد حقيقي موجب مناسب.

الكلمات المفتاحية: مؤثر كوشي بومبيو - ثُمن قرص الواحدة - التمثيل التكاملي - مسألة شوارتز - التحويل المحافظ - قرص الواحدة.

^{*}أستاذ- قسم الرياضيات -كلية العلوم-جامعة تشرين-اللاذقية-سورية

^{**}طالب دراسات عليا (دكتوراه) - قسم الرياضيات-كلية العلوم-جامعة تشرين-اللاذقية-سورية

The Boundedness Of The Cauchy – Pompeiu's Integral Operator In The Octant Of Unit Disk

Dr. Hasan Baddour* Anas Kar**

□ Abstract □

In this research, we determined the integral Cauchy – Pompeiu's formula in octant of unit disk of the complex plane, by using conformal mapping that transform the octant unit disk \mathbb{D}_4 onto the half unit disk \mathbb{D}^+ , because we have already the integral Cauchy – Pompeiu's representation in half unit disk ,for determining Cauchy – Pompeiu's operator in octant unit disk, then we proved the boundedness of the resulting operator, by using Shmitz's inequality, composing it an operator in the space $\mathcal{C}^{\alpha}(\mathbb{D}_4;\mathbb{C})$ where α is a proper real positive number.

Key Words: Cauchy Pompeiu's operator – octant unit disk – integral representation – Schwartz's problem – conformal mapping – unit disk.

^{*}Professor ,Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria

^{**}Postgraduate Student, Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria

مقدمة:

تُعد نظريّـة المـؤثرات فرعـاً مهمـاً مـن فـروع التحليـل الـدّالي، تـدرس خصائص المؤثرات

(خطي ، محدود ، مستمر ، تقليص ، ...) على الفضاءات الخطيّة المنظّمة الشهيرة مثل فضاء الحوال المستمرة $C(D;\mathbb{C})$ في المنطقة D ، وفضاء الدوال القابلة للمكاملة $L(D;\mathbb{C})$ ، وغيرها ، في هذا البحث سنوجد $T_{\mathbb{D}_4}$ ، مؤثر كوشي – بومبيو التكاملي في ثمن قرص الواحدة من المستوي العقدي \mathbb{C} ، وسندرس بعض خصائصه .

أهمية البحث وأهدافه:

 $D \subset \mathbb{C}$ نكمن أهمية البحث في أن مؤثر كوشي - بومبيو التكاملي T في المنطقة \mathbb{C} نُساعد في تعبين حل مسألة شواريّز الحديّة الآتية [1]:

$$\begin{cases} w_{\bar{z}} = f & \text{in } D \\ Re(w) = \gamma & \text{on } \partial D \end{cases}$$

إنّ صيغة كوشي – بومبيو التكاملية تُمثّل الدالة W بالشّكل:

$$w(z) = \phi(z) + Tf(z)$$

حيث ϕ دالة تحليليّة (أي إنّ $\phi=0$) ، والمؤثّر T يحقق المساواة:

$$\partial_{\bar{z}}Tf=f$$

وبذلك يُصبح:

$$\partial_{\bar{z}}w=\partial_{\bar{z}}\phi+\partial_{\bar{z}}Tf=f$$

لحل مسألة شوارتز ، يبقى التأكّد من الشرط الحدّي $\gamma = (w)$ ، والذي يجعلنا نعدّل صيغة كوشى – بومبيو الأساسية حسب شكل وخصائص المنطقة المدروسة.

ويهدف البحث إلى:

تعيين صيغة كوشي - بومبيو التكاملية في ثمن قرص الواحدة من المستوي
 العقدي

$$\mathbb{D}_4 = \left\{ z \in \mathbb{C}; |z| < 1, 0 < \arg(z) < \frac{\pi}{4} \right\}$$

- . $T_{\mathbb{D}_4}$ تعیین مؤثر کوشی بومبیو التکاملی فی هذه المنطقة مؤثر
- دراسة بعض خصائص المؤثر (خطية ، محدودية ، استمرار).

طرائق البحث ومواده:

يشمل البحث مبر هنات وتعاريف تربط بين نظرية المؤثرات و التحليل الدالي و التمثيل التكاملي ويستند بشكل أساسي على تعديل صيغة كوشي – بومبيو التكاملية المعرفة على نصف قرص الواحدة باستخدام تحويل محافظ ينقل ثمن قرص الواحدة إلى نصف قرص الواحدة ، لتعيين مؤثر كوشى – بومبيو في ثمن قرص الواحد في المستوى العقدى .

التعاريف الأساسية:

نذكر فيما يأتي مجموعة من التعاريف الأساسية وبعض الملاحظات التي تساعدنا في فهم المصطلحات العلمية الواردة في البحث وتوضيح برهان المبرهنات الواردة فيه.

تعريف (1) المنطقة النظامية Regular Domain

أملس أو اجتماع منته لمنحنيات ملساء، وموجّه بعكس عقارب الساعة.

نذكر أمثلةً للمناطق النظامية: الدائرة، الحلقة، نصف الحلقة، وربعها، نصف الدائرة، وربعها،المثلث، المستطيل، متوازي الأضلاع، ...

تعريف (2) المؤثّر المحدود Bounded Operator [3]:

ليكن X و Y فضاءان منظَمان، يُدعى المؤثّر الخطّي $T: X \to Y$ مؤثّراً محدوداً إذا وجد عدد حقيقي موجب C>0 يحقق الآتي:

$||Tx||_{Y} < C. ||x||_{X} ; \forall x \in X$

صيغة كوشي – بومبيو التكاملية Cauchy – Pompeiu's representation صيغة كوشي – بومبيو التكاملية [4]:

لتكن $D \subset C$ منطقة نظامية، ولتكن الدالة $(D;\mathbb{C}) \cap C(\overline{D};\mathbb{C})$ عندئذٍ لكل $D \subset C$ عندئذٍ لكل $Z \in D$ عندئذٍ لكل عندئذٍ لكل عندئذٍ $Z = \xi + i\eta$ و $Z \in D$

$$w(z) = \frac{1}{2\pi i} \int_{\partial D} w(\zeta) \cdot \frac{d\zeta}{\zeta - z} - \frac{1}{\pi} \int_{D} w_{\bar{\zeta}}(\zeta) \cdot \frac{d\xi d\eta}{\zeta - z}$$

$$w(z) = -\frac{1}{2\pi i} \int_{\partial D} w(\zeta) \cdot \frac{\overline{d\zeta}}{\overline{\zeta - z}} - \frac{1}{\pi} \int_{D} w_{\zeta}(\zeta) \cdot \frac{d\xi d\eta}{\overline{\zeta - z}}$$

ملحوظة.

عندما $Z \in \mathbb{C} \setminus \overline{D}$ ، تصبح صيغتا كوشي – بومبيو السابقتين على النحو الآتي:

$$0 = \frac{1}{2\pi i} \int_{\partial D} w(\zeta) \cdot \frac{d\zeta}{\zeta - z} - \frac{1}{\pi} \int_{D} w_{\overline{\zeta}}(\zeta) \cdot \frac{d\xi d\eta}{\zeta - z}$$

$$0 = -\frac{1}{2\pi i} \int_{\partial D} w(\zeta) \cdot \frac{\overline{d\zeta}}{\overline{\zeta - z}} - \frac{1}{\pi} \int_{D} w_{\zeta}(\zeta) \cdot \frac{d\xi d\eta}{\overline{\zeta - z}}$$

ومنه، يمكننا صياغة مبرهنة كوشي – بومبيو التكاملية بشكل آخر [5]، على النحو الأتى:

$$\frac{1}{2\pi i} \int_{\partial D} w(\zeta) \cdot \frac{d\zeta}{\zeta - z} - \frac{1}{\pi} \int_{D} w_{\overline{\zeta}}(\zeta) \cdot \frac{d\xi d\eta}{\zeta - z} = \begin{cases} w(z) & ; \ z \in D \\ 0 & ; \ z \notin \overline{D} \end{cases}$$

$$-\frac{1}{2\pi i} \int_{\partial D} w(\zeta) \cdot \frac{d\bar{\zeta}}{\overline{\zeta - z}} - \frac{1}{\pi} \int_{D} w_{\zeta}(\zeta) \cdot \frac{d\xi d\eta}{\overline{\zeta - z}} = \begin{cases} w(z) & ; \ z \in D \\ 0 & ; \ z \notin \overline{D} \end{cases}$$

تعریف (3) مؤثّر کوشی - بومبیو Cauchy – Pompeiu's Oparator [4]:

لتكن $D \subset \mathbb{C}$ منطقة نظامية، يُدعى المؤثر التكاملي

$$Tf(z) = -\frac{1}{\pi} \int_{D} f(\zeta) \frac{d\xi d\eta}{\zeta - z}$$
 ; $\zeta = \xi + i\eta$

. $f \in L_1(D;\mathbb{C})$ حيث مؤثر كوشى – بومبيو على المنطقة م

ملحوظة:

إنّ صيغة كوشي – بومبيو التكاملية تنقسم إلى مجموع تكاملين، الأول هو تكامل على حدود المنطقة المدروسة (و هو ϕ)، أما الثاني هو تكامل في المنطقة المدروسة D (وهو Tf)، ويُمثّل مؤثر كوشي – بومبيو في هذه المنطقة.

مبرهنة (1)[6]:

 $Tf\in L_p(D^*;\mathbb{C})$ عندئذ $f\in L_1(D;\mathbb{C})$ عندئذ ، إذا كان $D\subset \mathbb{C}$ عندئذ $D\subset \mathbb{C}$ عندئذ عند D عندئذ D عندئذ D عندئذ D عندئذ D عندئذ المستوي العقدي D عندئد D عندئذ D عندئد أي العقدي D عندئد عند المستوي العقدي D عندئد المستوي العقدي D عندئد المستوي العقدي D عندئد المستوي العقدي D عندئد المنطقة D عندئد المستوي العقدي D عندئد المستوي المستوي العقدي D عندئد المستوي العقدي D عندئد المستوي العقدي D عندئد المستوي ال

مبرهنة (2)[6]:

لتكن $D\subset\mathbb{C}$ منطقة محدودة ، إذا كان $C^{\alpha}(D;\mathbb{C})$ عندئذٍ D مغدئذٍ D منطقة محدودة ، إذا كان $C^{\alpha}(\overline{D};\mathbb{C})$ ميث $C^{\alpha}(D;\mathbb{C})$ عندئذٍ $C^{\alpha}(D;\mathbb{C})$ مغدئدٍ $C^{\alpha}(D;\mathbb{C})$ مغدئدٍ $C^{\alpha}(D;\mathbb{C})$ مغدئدٍ عندئدٍ $C^{\alpha}(D;\mathbb{C})$ مغدئدٍ $C^{\alpha}(D;\mathbb{C})$ مغدئد $C^{\alpha}(D;\mathbb{C})$

مبرهنة (3)[7]:

 $: _{\omega}: W \in C^1(\mathbb{D}^+; \mathbb{C}) \cap C(\overline{\mathbb{D}^+}; \mathbb{C})$ کل داله ($w \in C^1(\mathbb{D}^+; \mathbb{C})$

$$w(z) = \frac{1}{2\pi i} \int_{\substack{|\zeta|=1\\ \text{Im}\zeta>0}} \text{Re}w(\zeta) \left[\frac{\zeta+z}{\zeta-z} - \frac{\bar{\zeta}+z}{\bar{\zeta}-z} \right] \cdot \frac{d\zeta}{\zeta}$$
$$+ \frac{1}{\pi} \int_{\substack{|\zeta|=1\\ \text{Im}\zeta>0}} \text{Im}w(\zeta) \cdot \frac{d\zeta}{\zeta}$$

$$+\frac{1}{\pi i}\int_{-1}^{1} \operatorname{Re}w(t) \left[\frac{1}{t-\zeta} - \frac{z}{1-zt}\right] dt$$

$$-\frac{1}{\pi i} \int_{\mathbb{D}^+} \left\{ w_{\bar{\zeta}}(\zeta) \left[\frac{1}{\zeta - z} - \frac{z}{1 - z\zeta} \right] - \overline{w_{\bar{\zeta}}(\zeta)} \left[\frac{1}{\bar{\zeta} - z} - \frac{z}{1 - z\bar{\zeta}} \right] \right\} d\xi d\eta$$

حبث:

$$z \in \mathbb{D}^+ = \{z \in \mathbb{C} ; \operatorname{Im}(z) > 0, |z| < 1\}, \zeta = \xi + i\eta$$

متراجحة شميتز (Schmitz)[8]:

لتكن $\mathbb{D} \subset \mathbb{C}$ منطقة نظاميّة ، عندئذٍ يكون:

$$\int_{D} \frac{d\xi d\eta}{|\zeta - z|^{\alpha}} \le \frac{2\pi}{2 - \alpha} \left(\frac{S_{D}}{\pi}\right)^{1 - \frac{\alpha}{2}}$$

0<lpha<2 هي مساحة المنطقة D، و lpha عدد حقيقي يحقق S_D

تعريف (4) مسألة شوارتز الحديّة The Schwartz's problem [1]:

إنّ حل مسألة شوارتز الحدية هو عملية إيجاد دالة W، في المنطقة $D \subset C$ ، تحقق ما يأتى:

$$\begin{cases} \partial_{\bar{z}} w = f & in \ D \\ Re(w) = \gamma & on \ \partial D \end{cases}$$

حيث $\gamma \in C(\partial D, \mathbb{C})$ ، $f \in L_1(D; \mathbb{C})$ هما دالتان مفروضتان.

ملحوظة: تُحقق صيغة كوشي – بومبيو في التمثيل التكاملي الشرط: $\partial_{\bar{z}} w = f$ ، ويلزم تعديل هذه الصيغة من منطقة إلى أُخرى، لتحقيق الشرط الحدّي لمسألة شوارتز.

النتائج ومناقشتها:

يُعرّف ثُمن قرص الواحدة بالشكل الآتى:

$$\mathbb{D}_4 = \left\{ z \in \mathbb{C}; |z| < 1 \text{ , } 0 < \arg z < \frac{\pi}{4} \right\}$$

ولنفرض:

[0,1] للقطعة المستقيمة $\partial_1 \mathbb{D}_4$

$$au\in[0,rac{\pi}{4}]$$
 حيث $[1,e^{rac{\pi}{4}i}]: au o e^{ au i}$ عيث $\partial_2\mathbb{D}_4$

 $\left[e^{rac{\pi}{4}i},0
ight]$ للقطعة المستقيمة $\partial_3\mathbb{D}_4$

إنّ التحويل:

$$\varphi: \zeta \to \zeta^4$$

ينقل ثُمن قرص الواحدة إلى نصفها، ومنه ينقل التحويل العكسى:

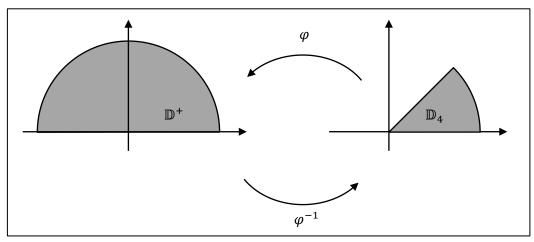
$$\varphi^{-1} = \psi : \zeta \to \sqrt[4]{\zeta}$$

نصف قرص الواحدة إلى ثُمنها (الشكل 1)

ينقل التحويل ψ القطعة المستقيمة [0,1] من نصف قرص الواحدة إلى القطعة المستقيمة نفسها من ربع قرص الواحدة.

 $\partial_2\mathbb{D}_4$ ينقل التحويل ψ القوس $au=[1,-1]: au o e^{ au i}$ القوس بنقل التحويل من ربع قرص الواحدة.

ينقل التحويل ψ القطعة المستقيمة [-1,0] من نصف قرص الواحدة إلى القطعة المستقيمة $\partial_3\mathbb{D}_4$ من ربع قرص الواحدة.



(الشكل 1)

وبشكلِ عام، إذا كانت $z \in \mathbb{D}^+$ عندئذٍ يكون:

$$0 < \arg(z) < \pi , |z| < 1$$

ومنه:

$$0<rac{1}{4} {
m arg}(z)<rac{\pi}{4}
ightarrow 0< {
m arg}ig(\sqrt[4]{z}ig)<rac{\pi}{4}$$
 , $\left|\sqrt[4]{z}
ight|<1$ هذا يعنى أنّ: $\sqrt[4]{z}\in\mathbb{D}_4$.

مبرهنة 1: كل دالّة $w\in C^1(\mathbb{D}_4;\mathbb{C})\cap C(\overline{\mathbb{D}_4};\mathbb{C})$ مبرهنة $w\in C^1(\mathbb{D}_4;\mathbb{C})$

$$w(z) = \frac{2}{\pi i} \int_{\substack{|\zeta|=1\\0 < \arg \zeta < \frac{\pi}{4}}} \left\{ \text{Re}[w(\zeta)] \cdot \left[\frac{\zeta^4 + z^4}{\zeta^4 - z^4} + \frac{\zeta^4 z^4 + 1}{z^4 \zeta^4 - 1} \right] \right\} \frac{d\zeta}{\zeta}$$

$$+ \frac{4}{\pi i} \int_{\substack{|\zeta|=1\\0 < \arg \zeta < \frac{\pi}{4}}}^{1} \text{Im}[w(\zeta)] \frac{d\zeta}{\zeta}$$

$$+ \frac{4}{\pi i} \int_{1}^{0} \text{Re}\left[w\left(t \cdot e^{\frac{\pi}{4}i}\right) \right] \cdot \left[\frac{t^3}{t^4 + z^4} + \frac{t^3 z^4}{z^4 t^4 + 1} \right] dt$$

$$+ \frac{4}{\pi i} \int_{0}^{1} \text{Re}[w(t)] \cdot \left[\frac{t^3}{t^4 - z^4} + \frac{t^3 z^4}{z^4 t^4 - 1} \right] dt$$

$$- \frac{1}{\pi} \int_{\mathbb{D}_4} \left\{ w_{\overline{\zeta}}(\zeta) \cdot \left[\frac{4\zeta^3}{\zeta^4 - z^4} + \frac{4\zeta^3 z^4}{z^4 \zeta^4 - 1} \right] - \overline{w_{\overline{\zeta}}(\zeta)} \cdot \left[\frac{4\overline{\zeta}^3}{\overline{\zeta}^4 - z^4} + \frac{4\overline{\zeta}^3 z^4}{z^4 \overline{\zeta}^4 - 1} \right] \right\} d\xi d\eta$$

البرهان:

بتعويض ζ^4 (و z^4 أيضاً) بدلاً من ζ (بدلاً من z) ، في المبرهنة (3) ، ومع ملاحظة أن:

$$d\zeta^4 = 4\zeta^3 d\zeta$$

وباستبدال التكامل على القطعة المستقيمة [-1,1] بمجموع تكاملين ،الأول على القطعة المستقيمة [0,1] ، و الثاني على القطعة المستقيمة $[e^{\frac{\pi}{4}i},0]$ ، نحصل على الصيغة المطلوبة.

من المبرهنة السابقة يمكننا تعيين مؤثر كوشي – بومبيو التكاملي في ثُمن قرص الوحدة \mathbb{D}_4 بالشكل الآتي:

$$T_{\mathbb{D}_{4}}f(z) = -\frac{1}{\pi} \int_{\mathbb{D}_{4}} \left\{ f(\zeta) \cdot \left[\frac{4\zeta^{3}}{\zeta^{4} - z^{4}} + \frac{4\zeta^{3}z^{4}}{z^{4}\zeta^{4} - 1} \right] - \overline{f(\zeta)} \cdot \left[\frac{4\bar{\zeta}^{3}}{\bar{\zeta}^{4} - z^{4}} + \frac{4\bar{\zeta}^{3}z^{4}}{z^{4}\bar{\zeta}^{4} - 1} \right] \right\} d\xi d\eta$$

وهو التكامل على المنطقة \mathbb{D}_4 ، في تمثيل كوشى – بومبيو المعدّل في \mathbb{D}_4 .

 $T_{\mathbb{D}_4}$ في المبرهنة الآتية نبرهن محدوديّة المؤثر

، p>2 ميرهنة $T_{\mathbb{D}_4}$: $C^p(\mathbb{D}_4;\mathbb{C}) o C^{lpha}(\overline{\mathbb{D}_4};\mathbb{C})$ ميث ميرهنة $lpha=rac{p-2}{p}$.

البرهان:

من المبرهنة (2) [6] يمكننا أن نكتب:

$$T_{\mathbb{D}_4} \colon \mathcal{C}^p(\mathbb{D}_4;\mathbb{C}) \subset L_p(\mathbb{D}_4;\mathbb{C}) o \mathcal{C}^{lpha}(\overline{\mathbb{D}_4};\mathbb{C})$$
حيث $\alpha = rac{p-2}{p}$ ، $p > 2$

لدينا:

$$\begin{split} \left| T_{\mathbb{D}_4} f(z) \right| &= \left| -\frac{1}{\pi} \int_{\mathbb{D}_4} \left\{ f(\zeta) . \left[\frac{4\zeta^3}{\zeta^4 - z^4} + \frac{4\zeta^3 z^4}{z^4 \zeta^4 - 1} \right] \right. \\ &- \overline{f(\zeta)} . \left[\frac{4\bar{\zeta}^3}{\bar{\zeta}^4 - z^4} + \frac{4\bar{\zeta}^3 z^4}{z^4 \bar{\zeta}^4 - 1} \right] \right\} d\xi d\eta \bigg| \\ &\leq \frac{1}{\pi} \int_{\mathbb{D}_4} \left| f(\zeta) . \left[\frac{4\zeta^3}{\zeta^4 - z^4} + \frac{4\zeta^3 z^4}{z^4 \zeta^4 - 1} \right] \right. \\ &- \overline{f(\zeta)} . \left[\frac{4\bar{\zeta}^3}{\bar{\zeta}^4 - z^4} + \frac{4\bar{\zeta}^3 z^4}{z^4 \bar{\zeta}^4 - 1} \right] d\xi d\eta \end{split}$$

$$\leq \frac{1}{\pi} \int_{\mathbb{D}_{4}} \left\{ |f(\zeta)| \cdot \left| \frac{4\zeta^{3}}{\zeta^{4} - z^{4}} + \frac{4\zeta^{3}z^{4}}{z^{4}\zeta^{4} - 1} \right| + \left| \overline{f(\zeta)} \right| \cdot \left| \frac{4\overline{\zeta}^{3}}{\overline{\zeta}^{4} - z^{4}} + \frac{4\overline{\zeta}^{3}z^{4}}{z^{4}\overline{\zeta}^{4} - 1} \right| \right\} d\xi d\eta \dots (2.1)$$

بما أنّ:

$$\frac{4\zeta^3}{\zeta^4 - z^4} = \frac{1}{\zeta - z} + \frac{1}{\zeta + z} + \frac{1}{\zeta - iz} + \frac{1}{\zeta + iz}$$
$$\frac{4\zeta^3 z^4}{z^4 \zeta^4 - 1} = \frac{1}{\zeta - \frac{1}{z}} + \frac{1}{\zeta + \frac{1}{z}} + \frac{1}{\zeta - \frac{i}{z}} + \frac{1}{\zeta + \frac{i}{z}}$$

يُمكننا أن نكتب:

$$\left| \frac{4\zeta^{3}}{\zeta^{4} - z^{4}} \right| = \left| \frac{1}{\zeta - z} + \frac{1}{\zeta + z} + \frac{1}{\zeta - iz} + \frac{1}{\zeta + iz} \right|$$

$$\leq \left| \frac{1}{\zeta - z} \right| + \left| \frac{1}{\zeta + z} \right| + \left| \frac{1}{\zeta - iz} \right| + \left| \frac{1}{\zeta + iz} \right| \leq \left| \frac{4}{\zeta - z} \right|$$

$$\left| \frac{4\zeta^{3}z^{4}}{z^{4}\zeta^{4} - 1} \right| = \left| \frac{1}{\zeta - \frac{1}{z}} + \frac{1}{\zeta + \frac{1}{z}} + \frac{1}{\zeta - \frac{i}{z}} + \frac{1}{\zeta + \frac{i}{z}} \right|$$

$$\leq \left| \frac{1}{\zeta - \frac{1}{z}} \right| + \left| \frac{1}{\zeta + \frac{1}{z}} \right| + \left| \frac{1}{\zeta - \frac{i}{z}} \right| + \left| \frac{1}{\zeta + \frac{i}{z}} \right| \leq \left| \frac{4}{\zeta - \frac{1}{z}} \right|$$

وذلك بملاحظة أنّ:

$$\begin{aligned} &|\zeta - z| < |\zeta + z|, |\zeta - z| < |\zeta - iz|, |\zeta - z| < |\zeta + iz| \\ \Rightarrow &\left| \frac{1}{\zeta - z} \right| > \left| \frac{1}{\zeta + z} \right|, \left| \frac{1}{\zeta - z} \right| > \left| \frac{1}{\zeta - iz} \right|, \left| \frac{1}{\zeta - z} \right| > \left| \frac{1}{\zeta + iz} \right| \end{aligned}$$

بالتعويض في
$$|f(\zeta)| = |\overline{f(\zeta)}|$$
 . آخذين بعين الاعتبار أنّ: $|f(\zeta)| = |\overline{f(\zeta)}|$ نجد:

$$\begin{split} \left|T_{\mathbb{D}_{4}}f(z)\right| &\leq \frac{2}{\pi} \int_{\mathbb{D}_{4}} \left|f(\zeta)\right| \left\{ \left|\frac{4}{\zeta - z}\right| + \left|\frac{4z}{z\zeta - 1}\right| + \left|\frac{4}{\zeta - \bar{z}}\right| \right. \\ &+ \left|\frac{4\bar{z}}{\bar{z}\zeta - 1}\right| \right\} d\xi d\eta \\ &\leq \frac{2}{\pi} \left\|f\right\|_{C^{p}} \int_{\mathbb{D}} \left|\frac{16}{\zeta - z}\right| d\xi d\eta \dots (2.2) \end{split}$$

حيث:

$$||f||_{C^p} = \max_{z \in \mathbb{D}_4} |f(z)|$$

$$\left|\frac{1}{\zeta - z}\right| > \left|\frac{z}{z\zeta - 1}\right|, \left|\frac{1}{\zeta - z}\right| > \left|\frac{1}{\zeta - z}\right|, \left|\frac{1}{\zeta - z}\right| > \left|\frac{\bar{z}}{\bar{z}\zeta - 1}\right|$$

وحسب مبرهنة شميتز (Shmitz) لدينا:

$$\int_{\mathbb{D}_4} \frac{16}{|\zeta - z|} d\xi d\eta \le 32\pi \left(\frac{S_{\mathbb{D}_4}}{\pi}\right)^{1 - \frac{1}{2}} = 8\pi\sqrt{2}$$

حبث:

$$S_{\mathbb{D}_4} = \frac{\pi}{8}$$

بالتعويض في (2.2) نحصل على:

$$|T_{\mathbb{D}_4} f(z)| \le \frac{2}{\pi} ||f||_{C^p} (8\pi\sqrt{2}) = 16\sqrt{2}. ||f||_{C^p} \dots (2.3)$$

ومنه يصبح المؤثّر $T_{\mathbb{D}_4}$ محدوداً، وهو المطلوب.

محدوديّة مؤثر كوشي - بومبيو التكاملي في ثُمن قرص الواحدة

بسهولة يمكننا ملاحظة أنّ المؤثر $T_{\mathbb{D}_4}$ خطّي ، ولمّا كان كُل مؤثر خطّي و محدود في فضاء منظّم هو مؤثر مستمر ، استنتجنا أنّ المؤثر $T_{\mathbb{D}_4}$ مستمر .

نذكر بعض التطبيقات العمليّة لهذا البحث:

- 1) تعيين مقدار قوى الضغط على سطح منطقة D، بمعرفة مقدار الضغط على محيط هذه المنطقة.
 - 2) تعيين شدة حقل كهربائي مطبّق على صفيحة معدنية D، بمعرفة شدّة الحقل عند حدود الصفيحة.
 - 3) تعيين قوّة اهتزاز سطح غشاء D، بمعرفة قوّة اهتزاز حدود الغشاء.

أهم النتائج والتوصيات:

- 1- قمنا بتعديل صيغة كوشي بومبيو التكاملية في النصف العلوي لقرص الواحدة $\varphi: \zeta \to \zeta^4$ باستخدام التحويل $\zeta \to \zeta^4$ الذي ينقل ثُمن قرص الواحدة إلى نصفها.
 - 2- عينا مؤثر كوشي بومبيو التكاملي في ثُمن قرص الواحدة.
- 3- أثبتنا محدودية و استمرار مؤثر كوشي بومبيو التكاملي المعيّن في ثمن قرص الواحدة، باستخدام متراجحة شميدت.

التوصيات:

ننصح بمتابعة هذا البحث من خلال الآتي:

 \mathbb{D}_n حيث حديل صيغة كوشي – بومبيو التكاملية في مناطق جديدة مثل القطّاع \mathbb{D}_n حيث $n \geq 2$ ، والذي يعد تعميماً لما تم إنجازه حتى الآن في هذا الموضوع.

2- تعيين مؤثر كوشي - بومبيو الناتج في المناطق الجديدة، ودراسة خصائصه.

المراجع:

- [1] Wang, Y, 2011 <u>Boundary value problems for complex partial differential equations in fan-shaped domains</u>. Ph.D. thesis, FU Berlin.
- [2] Shupeyeva, B, 2013 <u>Some Basic Boundary Value Problems</u> for Complex Partial Differential Equations in Quarter Ring and <u>Half Hexagon</u>. Ph.D. thesis, FU Berlin,.
- [3] Morse, P. M, and Feshbach, H, 1946 Methods of Theoretical Physics. MIT Technology Press. 497p.
- [4] Vaitsiakhovich, T, 2008 <u>Boundary Value Problems for Complex Partial Differential Equations in a ring domain</u>. PhD thesis, FU Berlin.
- [5] Begehr, H, Vaitekhovich, T, 2014 <u>Schwarz problem in lens and lune</u>. Complex Var. Ell. Eq., **59**(1),p 76–84.
- [6] Vekua I.N, 1962 <u>Generalized Analytic Functions</u>. <u>Pergamon Press</u>. Oxford.
- [7] Begehr, H, Vaitekhovich, T, 2009 <u>Harmonic boundary value problems in half disc and half ring</u>. Functiones et Approximatio, 40.2, pp.251-282.
- [8] Tutschke, W, Mshimba, A.S, 1995 <u>proceedings of the Functional analytic methods in complex analysis and applications to partial differential equations</u>. World Scientific Publishing Co.Pte.Ltd, Singapore,