أنصاف الزّمر على مجموعة الخماسيّات الفيثاغوريّة

الباحث: الدكتور باسل حمدو العرنوس

أستاذ مساعد في قسم الرياضيات - كليّة العلوم - جامعة حمص

ملخّص البحث

قمنا في هذا البحث بتعريف عمليّة ثنائيّة مغلقة * على مجموعة الخماسيّات الفيثاغوريّة PP_5 ، على النحو الآتي:

:العمليّة الثّنائيّة الآتية PP_5 نعرّف على PP_5 العمليّة الثّنائيّة الآتية الآتي

$$(a_1,a_2,a_3,a_4,a_5)*(b_1,b_2,b_3,b_4,b_5)=(c_1,c_2,c_3,c_4,c_5)$$

حيث:

$$\begin{split} c_1 &= a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4 \\ c_2 &= a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3 \\ c_3 &= a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4 \\ c_4 &= a_1b_4 + a_4b_1 + a_2b_3 - a_3b_2 \end{split} \quad , \quad c_5 = a_5b_5$$

 $(PP_5,*)$ ومن ثمّ حصلنا على البنية الجبريّة

قمنا بعد ذلك بإثبات أنّ هذه البنية هي نصف زمرة واحديّة.

الكلمات المفتاحية: خماسيّة فيثاغوريّة، رباعيّة فيثاغوريّة، ثلاثيّة فيثاغوريّة، بنية، نصف زمرة، محابد.

Semigroups on the Set of Pythagorean Pentads

Researcher: Dr. Basel Hamdo Al-Arnous

Assistant Professor, Department of Mathematics – Faculty of Science – Homs University.

Abstract

In this study, we define a closed operation * on the set of Pythagorean pentads, denoted by PP_5 , as follows:

Let $(a_1,a_2,a_3,a_4,a_5),(b_1,b_2,b_3,b_4,b_5) \in PP_5$. We define the following binary operation on PP_5 :

$$(a_1,a_2,a_3,a_4,a_5)*(b_1,b_2,b_3,b_4,b_5)=(c_1,c_2,c_3,c_4,c_5)$$

Given that:

$$\begin{aligned} c_1 &= a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4 \\ c_2 &= a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3 \\ c_3 &= a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4 \end{aligned} \quad , \quad c_5 = a_5b_5$$

$$c_4 &= a_1b_4 + a_4b_1 + a_2b_3 - a_3b_2$$

Accordingly, $(PP_5,*)$ forms an algebraic structure.

Then, We prove that this structure constitutes a semigroup.

Keywords:

Pythagorean pentad, Pythagorean quadruple, Pythagorean triple, structure, semigroup, identit.

1.مقدّمة

(a,b,c) لتكن R حلقة صحيحة معرّفة فوق الحقل العددي R نقول عن الثلاثيّة R لتكن $a,b,c\in R$ حبث $a,b,c\in R$ ثلاثيّة فبثاغوربّة إذا كانت

في العام 1984 عرّف إيكيرت Eckert عمليّة جمع بين الثلاثيّات الفيثاغوريّة عندما $R=\mathbf{Z}$

$$(a_1,b_1,c_1)+(a_2,b_2,c_2)=(a_1a_2-b_1b_2,a_1b_2+b_1a_2,c_1c_2)$$

بحيث تشكّل مجموعة كلّ الثّلاثيّات الفيثاغوريّة الصحيحة بالإضافة إلى (1,0,1) مع العمليّة + زمرة تبديلية [1].

بعد ذلك وتحديداً في العام 1991 قام زناردو Zanardo و زانبير Zannier بتعميم المجال من \mathbf{Z} إلى أي حلقة من الأعداد الصحيحة \mathbf{Z} .

في العام 1996 قام بيوريجارد Beauregard و سوريانريان Suryanarayan بتعريف عمليّة مغلقة * على مجموعة كل الثلاثيّات الفيثاغوريّة الصحيحة، على النحو الآتي [3]:

$$(a_1,b_1,c_1)*(a_2,b_2,c_2)=(a_1a_2,b_1c_2,c_1b_2+b_1b_2+c_1c_2)$$

في هذا البحث، قمنا بتعريف الخماسيّات الفيثاغوريّة، ومن ثمّ تعريف عمليّة مغلقة * على مجموعة كل الخماسيّات الفيثاغوريّة PP_5 ، وأثبتنا أنّ البنية $(PP_5, *)$ هي نصف زمرة، وأوجدنا العنصر المحابد بالنسبة للعمليّة *.

استخدمنا في ذلك الأعداد فوق العقديّة (الكواترنيون)

2. هدف البحث

يهدف البحث إلى إيجاد عمليّة ثنائيّة على مجموعة كل الخماسيّات الفيثاغوريّة الصحيحة، وبالتالي توليد خماسيّة فيثاغوريّة من خماسيتين فيثاغوريّتين.

3. المناقشة و النتائج

أوّلاً: مجموعة الأعداد فوق العقدية [4]:

تعریف1:

تعرّف مجموعة الأعداد فوق العقدية (الكواتيرنيون) H، بأنها مجموعة كلّ الأعداد التي لها الشّكل:

$$q = q_0 + q^* = q_0 + q_1 i + q_2 j + q_3 k$$

حيث: $\square q_0,q_1,q_2,q_3 \in \square$ وحدات تحقق الشروط الآتية:

$$i^{2} = j^{2} = k^{2} = ijk = -1$$

$$ij = k = -ji$$

$$jk = i = -kj$$

$$ki = j = -ik$$

مثال 1: الأعداد الآتية فوق عقدية:

$$4+2i-2j+3k$$
 , -5 , $2i-3j+3k$, $5-4i$

لكل عدد فوق عقدي قسمين: قسم حقيقي (سلّمي) وجزء متّجهي، فمن أجل العدد فوق العقدي:

$$q = q_0 + q^* = q_0 + q_1 i + q_2 j + q_3 k$$

 $q^*=q_1i+q_2j+q_3k$: قَإِنَّ الجزء المقيقي ، q_0 أمّا الجزء المقبو

ثانياً: جبر الأعداد فوق العقديّة [5]:

اليكن لدينا $p,q \in H$ حيث

$$p = p_0 + p^* = p_0 + p_1 i + p_2 j + p_3 k$$
$$q = q_0 + q^* = q_0 + q_1 i + q_2 j + q_3 k$$

تعریف2:

تُعرّف عمليّة جمع الأعداد فوق العقديّة (+) على النّحو الآتي:

$$p + q = (p_0 + q_0) + (p^* + q^*)$$
$$= (p_0 + q_0) + (p_1 + q_1)i + (p_2 + q_2)j + (p_3 + q_3)k$$

واضح أنّ الصّفر هو محايد بالنّسبة لعمليّة الجمع، وكذلك فإنّ لكل عدد p من H نظير جمعي، هو:

$$-p = -p_0 - p^* = -p_0 - p_1 i - p_2 j - p_3 k$$

تعریف3:

تُعرّف عمليّة ضرب الأعداد فوق العقديّة (٠) على النّحو الآتى:

$$\begin{aligned} p.q &= (p_0.q_0) - (p_1.q_1 + p_2.q_2 + p_3.q_3) + \\ &+ p_0 (q_1 i + q_2 j + q_3 k) + q_0 (p_1 i + p_2 j + p_3 k) + \\ &+ (p_2.q_3 - p_3.q_2) i + (p_3.q_1 - p_1.q_3) j + (p_1.q_2 - p_2.q_1) k \end{aligned}$$

وهي تكتب بالشّكل الآتي:

$$p.q = (p_0.q_0) - p^*q^* + p_0q^* + q_0p^* + p^* \times q^*$$

حبث:

$$p^* \cdot q^* = p_1 \cdot q_1 + p_2 \cdot q_2 + p_3 \cdot q_3$$
$$p^* \times q^* = \begin{vmatrix} i & j & k \\ p_1 & p_2 & p_3 \\ q_1 & q_2 & q_3 \end{vmatrix}$$

ولأنّ: $p^* \times q^* \neq q^* \times p^*$ فإنّ الضّرب ليس عمليّة تبديليّة.

ثالثاً: المرافق، النّظيم، المقلوب [6]:

ليكن $q=q_0+q^*=q_0+q_1i+q_2j+q_3k$ عدد فوق عقديّ.

تعریف4:

يُعرّف مرافق العدد q بانّه العدد \overline{q} من H المعطى بالعلاقة الآتية:

$$\overline{q} = q_0 - q^* = q_0 - q_1 i - q_2 j - q_3 k$$

من التّعريف ينتج أنّ:

$$\overline{(\overline{q})} = \overline{(q_0 - q^*)} = q_0 - (-q^*) = q_0 + q^* = q \quad \text{(i)} \quad \overline{(\overline{q})} = q \quad .1$$

$$\cdot q + \overline{q} = 2q_0 \cdot 2$$

وعلاوةً على ذلك فإنّ:
$$q.\overline{q} = \overline{q}.q$$
 .3

$$q.\overline{q} = \overline{q}.q = q_0^2 + q_1^2 + q_2^2 + q_3^2$$

$$p \in H$$
 حيث: $\overline{(q.p)} = \overline{p}.\overline{q}$.4

تعریف5:

يُعرّف نظيم العدد q بانّه العدد |q| من \square المعطى بالعلاقة الآتية:

$$|q| = \sqrt{q.\overline{q}} = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}$$

نتائج: ينتج من التّعريف أنّ:

$$|q| = |\overline{q}|$$
 .1

كن:
$$p \in H$$
 حيث $p : q = |p| \cdot |q|$ كنّ:

$$|p.q|^2 = p.q.(\overline{p.q}) = p.q.\overline{q}.\overline{p} = p.|q|^2.\overline{p} = p.\overline{p}.|q|^2 = |p|^2.|q|^2$$

رابعاً: أعداد ليبشتز الصّحيحة [7]:

تعریف 6:

أعداد ليبشتز الصّحيحة هي مجموعة كلّ الأعداد فوق العقديّة التي مكوّناتها أعداد صحيحة، ونرمز لها بالرمز له أي أنّ:

$$\mathbf{L} = \left\{ a + bi + cj + dk \in \mathbf{H}; \ a, b, c, d \in \Box \right\}$$

خامساً: الخماسيّات الفيتاغوريّة ٪:

 $\{x,y,z\}$ نعلم من نظريّة الأعداد، أنّ الثّلاثيّات الفيثاغوريّة في \square هي مجموعة كلّ الثّلاثيّات الثية:

$$x^{2} + y^{2} = z^{2}$$
; $x, y, z \in \square$

وعليه فإنّ الخماسيّات الفيثاغوريّة، هي مجموعة كلّ الخماسيّات $\{x,y,z,w,r\}$ والتي تحقّق معادلة ديوفانتس الآتية:

$$x^{2} + y^{2} + z^{2} + w^{2} = r^{2}$$
; $x, y, z, w, r \in \Box^{+}$

تعریف 7:

تسمّی خماسیّة فیثاغوریّة، کلّ خماسیّة (a,b,c,d,e)، حیث (a,b,c,d,e)، وتحقّق الشّرط الآتی:

$$a^2 + b^2 + c^2 + d^2 = e^2$$

سنرمز المجموعة كلّ الخماسيّات الفيثاغوريّة بالرّمز PP_5 وبالتّالي يكون:

$$PP_5 = \{(a,b,c,d,e); a^2 + b^2 + c^2 + d^2 = e^2 : a,b,c,d,e \in \square\}$$

مبرهنة 1 وتعريف 8:

نعرّف على PP_5 العمليّة الثّنائيّة الأتية: $(a_1,a_2,a_3,a_4,a_5),(b_1,b_2,b_3,b_4,b_5) \in PP_5$ ليكن

$$(a_1,a_2,a_3,a_4,a_5)*(b_1,b_2,b_3,b_4,b_5)=(c_1,c_2,c_3,c_4,c_5)$$

حىث:

$$\begin{split} c_1 &= a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4 \\ c_2 &= a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3 \\ c_3 &= a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4 \\ c_4 &= a_1b_4 + a_4b_1 + a_2b_3 - a_3b_2 \end{split} \quad , \quad c_5 = a_5b_5$$

عندئذٍ $(PP_5,*)$ بنية جبريّة.

الإثبات:

 $\cdot PP_5 \neq \{\ \}$ إنّ: $PP_5 \neq \{\ \}$ وبالتّالي فإنّ: $(0,0,0,0,0) \in PP_5$

ليكن p_1,p_2 بالشّكل ، $(a_1,a_2,a_3,a_4,a_5),(b_1,b_2,b_3,b_4,b_5)\in PP_5$ بالشّكل الآتى:

$$p_1 = \frac{a_1}{a_5} + \frac{a_2}{a_5}i + \frac{a_3}{a_5}j + \frac{a_4}{a_5}k$$
, $p_2 = \frac{b_1}{b_5} + \frac{b_2}{b_5}i + \frac{b_3}{b_5}j + \frac{b_4}{b_5}k$

ويكون:

$$|p_1| = \sqrt{\frac{a_1^2 + a_2^2 + a_3^2 + a_4^2}{a_5^2}} = \sqrt{\frac{a_5^2}{a_5^2}} = 1,$$

$$|p_2| = \sqrt{\frac{b_1^2 + b_2^2 + b_3^2 + b_4^2}{b_5^2}} = \sqrt{\frac{b_5^2}{b_5^2}} = 1$$

 $|p_1.p_2| = |p_1|.|p_2| = 1$ وبالتّالي يكون: 1

في الحقيقة فإنّ:

$$p_{1} \cdot p_{2} = \frac{a_{1}b_{1}}{a_{5}b_{5}} - \left(\frac{a_{2}b_{2} + a_{3}b_{3} + a_{4}b_{4}}{a_{5}b_{5}}\right) + \frac{a_{1}}{a_{5}} \left(\frac{b_{2}}{b_{5}}i + \frac{b_{3}}{b_{5}}j + \frac{b_{4}}{b_{5}}k\right) + \frac{b_{1}}{b_{5}} \left(\frac{a_{2}}{a_{5}}i + \frac{a_{3}}{a_{5}}j + \frac{a_{4}}{a_{5}}k\right) + \begin{vmatrix} i & j & k \\ \frac{a_{2}}{a_{5}} & \frac{a_{3}}{a_{5}} & \frac{a_{4}}{a_{5}} \\ \frac{b_{2}}{b_{5}} & \frac{b_{3}}{b_{5}} & \frac{b_{4}}{b_{5}} \end{vmatrix}$$

بإصلاح العلاقة، يكون:

$$\begin{split} p_1.p_2 &= \left(\frac{a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4}{a_5b_5}\right) + \left(\frac{a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3}{a_5b_5}\right).i \\ &= + \left(\frac{a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4}{a_5b_5}\right).j + \left(\frac{a_1b_4 + a_4b_1 + a_2b_3 - a_3b_2}{a_5b_5}\right).k \end{split}$$

وبحسب فرضيات المبرهنة يكون:

$$p_1.p_2 = \left(\frac{c_1}{c_5}\right) + \left(\frac{c_2}{c_5}\right).i + \left(\frac{c_3}{c_5}\right).j + \left(\frac{c_4}{c_5}\right).k$$

 $|p_1.p_2| = 1$ فإنّ ولأنّ الله فإنّ الله ولأنّ

$$\left(\frac{c_1}{c_5}\right)^2 + \left(\frac{c_2}{c_5}\right)^2 + \left(\frac{c_3}{c_5}\right)^2 + \left(\frac{c_4}{c_5}\right)^2 = 1$$

ومنه فإنّ:

$$c_1^2 + c_2^2 + c_3^2 + c_4^2 = c_5^2$$

وهذا يعني أنّ: PP₅: أنّ: (c₁,c₂,c₃,c₄,c₅) €

أي أنّ العمليّة * هي قانون تشكيل داخلي على PP_5 ، وبالتّالي $(PP_5,*)$ تعرّف بنية جبريّة. مثال 2:

$$(1,2,4,10,11),(1,2,8,10,13) \in PP_5$$
 ليكن:

$$(1,2,4,10,11)*(1,2,8,10,13)=(-135,-36,12,28,143)$$

إنّ:

$$(-135)^2 + (-36)^2 + (12)^2 + (28)^2 = 20449$$

 $(143)^2 = 20449$

 $.(-135, -36, 12, 28, 143) \in PP_5$ وبالتّالي فإنّ:

مبرهنة 2:

نقبل العمليّة * في البنية الجبريّة $(PP_5,*)$ عنصراً محايداً، هو (1,0,0,0,1). الأثبات:

نفرض وجود عنصر محايد يميني (e_1,e_2,e_3,e_4,e_5) للعمليّة *، عندئذٍ يكون:

: فإنّ ، $PP_{\scriptscriptstyle 5}\setminus \left\{ \left(0,0,0,0,0
ight)
ight\}$ من $\left(a_{\scriptscriptstyle 1},a_{\scriptscriptstyle 2},a_{\scriptscriptstyle 3},a_{\scriptscriptstyle 4},a_{\scriptscriptstyle 5}
ight)$ فإنّ

$$(a_1,a_2,a_3,a_4,a_5)*(e_1,e_2,e_3,e_4,e_5)=(a_1,a_2,a_3,a_4,a_5)$$

وبالتّالي فإنّ:

$$a_{1}e_{1} - a_{2}e_{2} - a_{3}e_{3} - a_{4}e_{4} = a_{1}$$

$$a_{1}e_{2} + a_{2}e_{1} + a_{3}e_{4} - a_{4}e_{3} = a_{2}$$

$$a_{1}e_{3} + a_{3}e_{1} + a_{4}e_{2} - a_{2}e_{4} = a_{3}$$

$$a_{1}e_{4} + a_{4}e_{1} + a_{2}e_{3} - a_{3}e_{2} = a_{4}$$

$$a_{5}e_{5} = a_{5}$$
(1)

من العلاقة الأخيرة ينتج أنّ $e_5=1$ ولأنّ $(e_1,e_2,e_3,e_4,e_5)\in PP_5$ فإنّ إحدى الأعداد $e_5=1$ الأربع المعادلات الأربع e_1,e_2,e_3,e_4 يساوي 1 أو e_1 والباقي أصفاراً. بالعودة إلى الجملة (1)، تُكتب المعادلات الأربع الأولى منها بالشّكل الآتى:

$$a_{1}e_{1} - a_{2}e_{2} - a_{3}e_{3} - a_{4}e_{4} = a_{1}$$

$$a_{2}e_{1} + a_{1}e_{2} - a_{4}e_{3} + a_{3}e_{4} = a_{2}$$

$$a_{3}e_{1} + a_{4}e_{2} + a_{1}e_{3} - a_{2}e_{4} = a_{3}$$

$$a_{4}e_{1} - a_{3}e_{2} + a_{2}e_{3} + a_{1}e_{4} = a_{4}$$

$$(2)$$

بنضريب الأولى ب a_2 والثالثة ب a_3 ونجمع المعادلتين الناتجتين، ثمّ نضريب الأولى ب a_3 والثالثة ب a_4 والثالثة ب a_4 ونجمع المعادلتين الناتجتين، وأخيراً نضريب الأولى ب a_4 والرابعة ب a_4 ونجمع المعادلتين الناتجتين، نحصل على:

$$-(a_1^2 + a_2^2)e_2 + (a_1a_4 - a_2a_3)e_3 - (a_1a_3 + a_2a_4)e_4 = 0$$

$$-(a_1a_4 + a_2a_3)e_2 - (a_1^2 + a_3^2)e_3 + (a_1a_2 - a_3a_4)e_4 = 0$$

$$(a_1a_3 - a_4a_2)e_2 - (a_1a_2 + a_3a_4)e_3 - (a_1^2 + a_4^2)e_4 = 0$$
(3)

الجملة (3) هي جملة متجانسة، وحيث أنّ اثنين من e_2, e_3, e_4 على الأقل تساوي الصفر، فإنّ $e_2 = e_3 = e_4 = 0$ بالتعويض في الجملة (2) نحصل على:

$$a_1e_1 = a_1$$
, $a_2e_1 = a_2$, $a_3e_1 = a_3$, $a_4e_1 = a_4$

وهي تكافئ: $e_1 = 1$ ، وعلى هذا يكون:

$$(e_1, e_2, e_3, e_4, e_5) = (1, 0, 0, 0, 1)$$

وبنفس الطريقة نستنتج أنّ: (1,0,0,0,1) محايد يساري للعمليّة *.

مبرهنة 3:

إِنَّ العمليَّة * المعرّفة على البنية الجبريّة $(PP_5,*)$ هي عمليّة تجميعيّة.

الإثبات:

: نفرض أنّ نفرض $(a_1,a_2,a_3,a_4,a_5),(b_1,b_2,b_3,b_4,b_5),(c_1,c_2,c_3,c_4,c_5) \in PP_5$ نيكن

$$(d_1, d_2, d_3, d_4, d_5) =$$

$$= (a_1, a_2, a_3, a_4, a_5) * [(b_1, b_2, b_3, b_4, b_5) * (c_1, c_2, c_3, c_4, c_5)]$$

عندئذِ يكون:

$$(d_1,d_2,d_3,d_4,d_5) = (a_1,a_2,a_3,a_4,a_5) *$$

$$(b_1c_1 - b_2c_2 - b_3c_3 - b_4c_4,b_1c_2 + b_2c_1 + b_3c_4 - b_4c_3,$$

$$b_1c_3 + b_3c_1 + b_4c_2 - b_2c_4,b_1c_4 + b_4c_1 + b_2c_3 - b_3c_2,b_5c_5)$$

وبالتالي:

$$d_1 = a_1 (b_1 c_1 - b_2 c_2 - b_3 c_3 - b_4 c_4) - a_2 (b_1 c_2 + b_2 c_1 + b_3 c_4 - b_4 c_3)$$
$$-a_3 (b_1 c_3 + b_3 c_1 + b_4 c_2 - b_2 c_4) - a_4 (b_1 c_4 + b_4 c_1 + b_2 c_3 - b_3 c_2)$$

و كذلك:

$$\begin{split} d_2 &= a_1 \left(b_1 c_2 + b_2 c_1 + b_3 c_4 - b_4 c_3 \right) + a_2 \left(b_1 c_1 - b_2 c_2 - b_3 c_3 - b_4 c_4 \right) + \\ &\quad + a_3 \left(b_1 c_4 + b_4 c_1 + b_2 c_3 - b_3 c_2 \right) - a_4 \left(b_1 c_3 + b_3 c_1 + b_4 c_2 - b_2 c_4 \right) \\ d_3 &= a_1 \left(b_1 c_3 + b_3 c_1 + b_4 c_2 - b_2 c_4 \right) + a_3 \left(b_1 c_1 - b_2 c_2 - b_3 c_3 - b_4 c_4 \right) + \\ &\quad + a_4 \left(b_1 c_2 + b_2 c_1 + b_3 c_4 - b_4 c_3 \right) - a_2 \left(b_1 c_4 + b_4 c_1 + b_2 c_3 - b_3 c_2 \right) \\ d_4 &= a_1 \left(b_1 c_4 + b_4 c_1 + b_2 c_3 - b_3 c_2 \right) + a_4 \left(b_1 c_1 - b_2 c_2 - b_3 c_3 - b_4 c_4 \right) + \\ &\quad + a_2 \left(b_1 c_3 + b_3 c_1 + b_4 c_2 - b_2 c_4 \right) - a_3 \left(b_1 c_2 + b_2 c_1 + b_3 c_4 - b_4 c_3 \right) \\ d_5 &= a_5 \left(b_5 c_5 \right) = a_5 b_5 c_5 \end{split}$$

الآن بفرض أنّ:

$$(f_1, f_2, f_3, f_4, f_5) =$$

$$= [(a_1, a_2, a_3, a_4, a_5) * (b_1, b_2, b_3, b_4, b_5)] * (c_1, c_2, c_3, c_4, c_5)$$

عندئذِ يكون:

$$(f_1, f_2, f_3, f_4, f_5) = (a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4,$$

$$a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3, a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4,$$

$$a_1b_4 + a_4b_1 + a_2b_3 - a_3b_2, a_5b_5) * (c_1, c_2, c_3, c_4, c_5)$$

وبالتالي:

$$f_{1} = (a_{1}b_{1} - a_{2}b_{2} - a_{3}b_{3} - a_{4}b_{4})c_{1} - (a_{1}b_{2} + a_{2}b_{1} + a_{3}b_{4} - a_{4}b_{3})c_{2} - (a_{1}b_{3} + a_{3}b_{1} + a_{4}b_{2} - a_{2}b_{4})c_{3} - (a_{1}b_{4} + a_{4}b_{1} + a_{2}b_{3} - a_{3}b_{2})c_{4}$$

$$= a_{1}(b_{1}c_{1} - b_{2}c_{2} - b_{3}c_{3} - b_{4}c_{4}) - a_{2}(b_{2}c_{1} + b_{1}c_{2} - b_{4}c_{3} + b_{3}c_{4}) - (a_{1}b_{4} + a_{4}b_{1} + a_{2}b_{3} - a_{3}b_{2})c_{4}$$

$$= a_{1}(b_{1}c_{1} - b_{2}c_{2} - b_{3}c_{3} - b_{4}c_{4}) - a_{2}(b_{2}c_{1} + b_{1}c_{2} - b_{4}c_{3} + b_{3}c_{4}) - (a_{1}b_{2} + a_{2}b_{1} + a_{2}b_{3} - a_{3}b_{2})c_{4}$$

$$- a_{3}(b_{3}c_{1} + b_{1}c_{3} + b_{4}c_{2} - b_{2}c_{4}) - a_{4}(b_{4}c_{1} + b_{1}c_{4} - b_{3}c_{2} + b_{2}c_{3})$$

وبالمثل نجد:

$$\begin{split} f_2 &= a_1 \left(b_1 c_2 + b_2 c_1 + b_3 c_4 - b_4 c_3 \right) + a_2 \left(b_1 c_1 - b_2 c_2 - b_3 c_3 - b_4 c_4 \right) + \\ &\quad + a_3 \left(b_1 c_4 + b_4 c_1 + b_2 c_3 - b_3 c_2 \right) - a_4 \left(b_1 c_3 + b_3 c_1 + b_4 c_2 - b_2 c_4 \right) \\ f_3 &= a_1 \left(b_1 c_3 + b_3 c_1 + b_4 c_2 - b_2 c_4 \right) + a_3 \left(b_1 c_1 - b_2 c_2 - b_3 c_3 - b_4 c_4 \right) + \\ &\quad + a_4 \left(b_1 c_2 + b_2 c_1 + b_3 c_4 - b_4 c_3 \right) - a_2 \left(b_1 c_4 + b_4 c_1 + b_2 c_3 - b_3 c_2 \right) \\ f_4 &= a_1 \left(b_1 c_4 + b_4 c_1 + b_2 c_3 - b_3 c_2 \right) + a_4 \left(b_1 c_1 - b_2 c_2 - b_3 c_3 - b_4 c_4 \right) + \\ &\quad + a_2 \left(b_1 c_3 + b_3 c_1 + b_4 c_2 - b_2 c_4 \right) - a_3 \left(b_1 c_2 + b_2 c_1 + b_3 c_4 - b_4 c_3 \right) \\ f_5 &= \left(a_5 b_5 \right) c_5 = a_5 b_5 c_5 \end{split}$$

واضح أَنّ: $(d_1,d_2,d_3,d_4,d_5)=(f_1,f_2,f_3,f_4,f_5)$ ، وبالتّالي فإنّ العمليّة * هي عمليّة تجميعيّة.

مثال 3:

$$:(1,1,3,5,6),(1,1,1,1,2),(1,2,4,10,11) \in PP_5$$
 ليكن:

لدينا من جهة أولى:

$$[(1,1,3,5,6)*(1,1,1,1,2)]*(1,2,4,10,11) =$$

$$= (-8,0,8,4,12)*(1,2,4,10,11) =$$

$$= (-80,48,-16,-92,132)$$

من جهة أخرى:

$$(1,1,3,5,6)*[(1,1,1,1,2)*(1,2,4,10,11)] =$$

$$= (1,1,3,5,6)*(-15,9,-3,13,22) =$$

$$= (-80,48,-16,-92,132)$$

4. المقترجات والتوصيات

قمنا في هذا البحث بتعريف عملية ثنائيّة * على مجموعة الخماسيات الفيثاغوريّة PP_5 وأوجدنا العنصر المحايد في البنية الجبرية $(*, PP_5, *)$ ، وأثبتنا أنّ هذه البنية هي نصف زمرة.

لذلك يمكن متابعة العمل في هذه البنية كدراسة كونها زمرة أم لا، وإيجاد صيغة مقلوب خماسية فيثاغورية وفق العملية *، وإيجاد الحالات الخاصة.

5. المراجع العلمية

- 1. Ernest J. Eckert, The Group of Primitive Pythagorean Triangles, Mathematics Magazine, 57 (Jan., 1984
- 2. P. Zanardo and U. Zannier, The group of pythagorean triples in number fields, Annali di Matematica pura ed applicata (IV), CLIX (1991)
- 3. Raymond A. Beauregard and E. R. Suryanarayan, Pythagorean Triples: The Hyperbolic View, The College Mathematics Journal, 27 (May, 1996)
- 4. Ant_onio Machiavelo and Lu_s Ro_cadas, Some connections between the arithmetic and geometry of Lipschitz integers,(2011)
- 5. John H. Conway and Derek Smith, On Quaternions and Octonions, AK Peters (2003)
- 6. J. B. Kuipers. Quaternions and Rotation Sequences. Princeton University Press, (1999).
- 7. S. L. Altmann. "Hamilton, Rodrigues, and the Quaternion Scandal," *Mathematics Magazine* 62(5), (December 1989).